CAREER: An Adaptive Stochastic Look-ahead Framework for Disaster Relief Logistics under Forecast Uncertainty

职业生涯:预测不确定性下救灾物流的自适应随机前瞻框架

基本信息

  • 批准号:
    2045744
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

This Faculty Early Career Development Program (CAREER) grant will contribute to the advancement of national health, prosperity and welfare by contributing new knowledge on effective disaster relief logistics operations for advance-notice natural disasters such as hurricanes and slow-moving storms. Improved disaster relief efforts can both alleviate human suffering and reduce economic loss. Current disaster relief logistics planning and operations do not effectively incorporate evolving weather forecasts and natural hazard analysis tools. This project will address this shortcoming by creating adaptive decision-support methods for effectively staging and utilizing scarce resources, leveraging both real-time forecast information and historical data. This project will foster a long-term collaboration between the operations research community and emergency management agencies by designing novel logistics decision support tools. The accompanying educational program aims to enrich engineering curriculum with data-driven analytic tools, create interdisciplinary research opportunities, and develop outreach activities for K-12 students and the general public to help them understand the role of operations research in addressing critical societal challenges such as disaster relief logistics.This research will contribute a holistic modeling and algorithmic framework for sequential decision making in disaster relief logistics planning and operations under dynamically evolving disaster situations and their rolling forecasts. This project will: (i) establish new theory to understand the impact of evolving forecast uncertainty on the quality of the decision policy induced by past forecast information; (ii) produce novel algorithms that integrate offline and online stochastic programming models using adaptive sampling, state space approximation, and stage approximation within a rolling-horizon procedure; and (iii) create and analyze novel structured decision policies to address the need to coordinate the timing of various logistics operations with heterogeneous modalities. The modeling and solution methodology on disaster relief logistics operations planning will be validated using both historical data on past hurricanes and simulation data. Research results will help engage and inform emergency managers in making logistics planning and operational policies that balance between adaptability, optimality and executability in practice.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项教师早期职业发展计划(Career)资助将通过为飓风和缓慢移动的风暴等提前通知的自然灾害提供有效的救灾后勤行动的新知识,为促进国家健康、繁荣和福利做出贡献。加强救灾工作既能减轻人类痛苦,又能减少经济损失。目前的救灾后勤规划和运作没有有效地纳入不断发展的天气预报和自然灾害分析工具。该项目将通过创建自适应决策支持方法来解决这一缺点,从而有效地利用稀缺资源,同时利用实时预测信息和历史数据。该项目将通过设计新颖的后勤决策支持工具,促进运筹学研究界和应急管理机构之间的长期合作。配套的教育项目旨在用数据驱动的分析工具丰富工程课程,创造跨学科的研究机会,并为K-12学生和公众开展拓展活动,帮助他们了解运筹学在解决关键社会挑战(如救灾后勤)中的作用。本研究将提供一个整体的模型与演算法框架,以协助救灾物流规划与作业在动态演化的灾害情势与滚动预测下的序贯决策。本项目将:(i)建立新的理论来理解不断变化的预测不确定性对由过去预测信息引起的决策政策质量的影响;(ii)在滚动地平线过程中使用自适应采样、状态空间近似和阶段近似,产生集成离线和在线随机规划模型的新算法;(iii)创建和分析新颖的结构化决策政策,以解决协调各种异构模式的物流操作时间的需求。灾害救援物流行动规划的建模和解决方法将使用过去飓风的历史数据和模拟数据进行验证。研究结果将有助于应急管理人员参与并为他们提供信息,帮助他们制定物流规划和业务政策,在实践中平衡适应性、最优性和可执行性。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Integrated Hurricane Relief Logistics and Evacuation Planning under Forecast Uncertainty: A Case Study for Hurricane Florence
预测不确定性下的综合飓风救援物流和疏散规划:佛罗伦萨飓风案例研究
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yongjia Song其他文献

Clustering of cyclones in the ARPEGE general circulation model
ARPEGE 大气环流模型中气旋的聚类
  • DOI:
    10.1111/j.1600-0870.2007.00307.x
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N. G. Kvamstø;Yongjia Song;Ivar A. Seierstad;A. Sorteberg;D. Stephenson
  • 通讯作者:
    D. Stephenson
P-wave attenuation and dispersion in a fluid-saturated rock with aligned rectangular cracks
具有对齐矩形裂缝的流体饱和岩石中的 P 波衰减和色散
  • DOI:
    10.1016/j.mechmat.2020.103409
  • 发表时间:
    2020-08
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Yongjia Song;Hengshan Hu;Bo Han
  • 通讯作者:
    Bo Han
Study protocol for a randomized controlled trial: evaluating the effect of isokinetic eccentric training of the hamstring on knee function and walking function after total knee arthroplasty
随机对照试验研究方案:评估等速偏心训练腘绳肌对全膝关节置换术后膝关节功能和步行功能的影响
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Tianjun Zhai;Yongjia Song;Jianqing Su;Ru;Jie Wang;Zengqiao Zhang;Wei Feng
  • 通讯作者:
    Wei Feng
Chance‐constrained multi‐terminal network design problems
机会约束多终端网络设计问题
  • DOI:
    10.1002/nav.21630
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yongjia Song;Minjiao Zhang
  • 通讯作者:
    Minjiao Zhang
Evacuation network design under road capacity improvement and uncertainty: second-order cone programming reformulations and Benders decomposition
道路通行能力提升与不确定性下的疏散网络设计:二阶锥规划重构与 Benders 分解
  • DOI:
    10.1016/j.ejor.2025.04.030
  • 发表时间:
    2025-11-01
  • 期刊:
  • 影响因子:
    6.000
  • 作者:
    Qing-Mi Hu;Shaolong Hu;Zhijie Sasha Dong;Yongjia Song
  • 通讯作者:
    Yongjia Song

Yongjia Song的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yongjia Song', 18)}}的其他基金

An Integrated Housing Design and Logistics Operations Modeling and Analysis Framework for Hurricane Relief
飓风救援的综合住房设计和物流运营建模与分析框架
  • 批准号:
    2053660
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
An Adaptive Partition-based Approach for Solving Large-Scale Stochastic Programs
一种求解大规模随机规划的自适应划分方法
  • 批准号:
    1854960
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
An Adaptive Partition-based Approach for Solving Large-Scale Stochastic Programs
一种求解大规模随机规划的自适应划分方法
  • 批准号:
    1562245
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Stochastic Optimization and Physics-informed Machine Learning for Scalable and Intelligent Adaptive Protection of Power Systems
职业:随机优化和基于物理的机器学习,用于电力系统的可扩展和智能自适应保护
  • 批准号:
    2338555
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Temporally Adaptive Stochastic Gradient Descent (TASGD)
时间自适应随机梯度下降 (TASGD)
  • 批准号:
    572648-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    University Undergraduate Student Research Awards
Using stochastic optimal feedback control and computational motor control to design personalized and adaptive human robot interfaces
使用随机最优反馈控制和计算电机控制来设计个性化和自适应人类机器人界面
  • 批准号:
    RGPIN-2021-02625
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: AF: Small: A Unified Framework for Analyzing Adaptive Stochastic Optimization Methods Based on Probabilistic Oracles
合作研究:AF:Small:基于概率预言的自适应随机优化方法分析统一框架
  • 批准号:
    2139735
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: A Unified Framework for Analyzing Adaptive Stochastic Optimization Methods Based on Probabilistic Oracles
合作研究:AF:Small:基于概率预言的自适应随机优化方法分析统一框架
  • 批准号:
    2140057
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Using stochastic optimal feedback control and computational motor control to design personalized and adaptive human robot interfaces
使用随机最优反馈控制和计算电机控制来设计个性化和自适应人类机器人界面
  • 批准号:
    RGPIN-2021-02625
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Grants Program - Individual
Adaptive multilevel stochastic collocation methods for uncertainty quantification
不确定性量化的自适应多级随机配置方法
  • 批准号:
    EP/W010925/1
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
Collaborative Research: AF: Small: Adaptive Optimization of Stochastic and Noisy Function
合作研究:AF:小:随机和噪声函数的自适应优化
  • 批准号:
    2008434
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Adaptive Optimization of Stochastic and Noisy Function
合作研究:AF:小:随机和噪声函数的自适应优化
  • 批准号:
    2008484
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Latent feature evaluation of muscle fatigue based on scale mixture stochastic model and its application to adaptive control of myoelectric prosthetic hand
基于尺度混合随机模型的肌肉疲劳潜特征评估及其在肌电假手自适应控制中的应用
  • 批准号:
    20K14698
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了