An Adaptive Partition-based Approach for Solving Large-Scale Stochastic Programs

一种求解大规模随机规划的自适应划分方法

基本信息

  • 批准号:
    1854960
  • 负责人:
  • 金额:
    $ 8.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2021-05-31
  • 项目状态:
    已结题

项目摘要

Stochastic programs are popular models for problems requiring optimization under uncertainty. Stochastic programs are challenging to solve, especially when uncertainty characterization relies on a large number of scenarios. Consequently, both scenario decomposition and scenario reduction (clustering and aggregation) techniques are used to reduce computational burden. The latter are performed either in a heuristic manner, or in a way that does not utilize information from intermediate solutions. This project's objective is to advance a computational framework based on partitioning the scenario set adaptively during the solution process. If successful, the technique can be potentially integrated into existing algorithms and software. By enabling faster computation, and in some cases making it possible to solve larger problem instances, the project has the potential to impact a whole host of applications requiring optimization under uncertainty. The adaptive partition-based framework will provide a mechanism to aggregate information from scenario sub-problems, by replacing the entire scenario set with an adaptively constructed partition of scenarios. If successful, this will lead to an algorithmic way to coordinate the efforts between approximating the distribution and optimization. The approach will integrate both the optimal (static) scenario reduction technique and the regularized cutting-plane method with inexact oracles in the context of stochastic programs. The developed algorithms will address two-stage and multi-stage stochastic linear programs as well as stochastic integer programs.
随机规划是求解不确定条件下最优化问题的常用模型。求解随机程序具有挑战性,特别是当不确定性表征依赖于大量场景时。因此,使用场景分解和场景约简(聚类和聚合)技术来减少计算负担。后者要么以启发式方式执行,要么以不利用中间解决方案信息的方式执行。该项目的目标是在解决方案过程中,基于自适应地划分场景集来推进计算框架。如果成功,这项技术有可能集成到现有的算法和软件中。通过实现更快的计算,并在某些情况下使解决更大的问题实例成为可能,该项目有可能影响在不确定情况下需要优化的整个应用程序主机。基于自适应分区的框架将提供一种机制,通过将整个场景集替换为自适应构建的场景分区,从场景子问题中聚合信息。如果成功,这将导致一种算法方法来协调近似分布和优化之间的努力。该方法将最优(静态)场景约简技术和正则化切割平面方法与随机规划中的不精确预言相结合。所开发的算法将处理两阶段和多阶段随机线性规划以及随机整数规划。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On level regularization with normal solutions in decomposition methods for multistage stochastic programming problems
多阶段随机规划问题分解方法中正则解的水平正则化
Adaptive Partition-Based Level Decomposition Methods for Solving Two-Stage Stochastic Programs with Fixed Recourse
求解具有固定追索权的两阶段随机规划的自适应划分层次分解方法
  • DOI:
    10.1287/ijoc.2017.0765
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    van Ackooij, Wim;de Oliveira, Welington;Song, Yongjia
  • 通讯作者:
    Song, Yongjia
Adaptive Partition-enabled Preprocessing for Multistage Stochastic Linear Programs
多级随机线性程序的自适应分区预处理
Adaptive partition-based SDDP algorithms for multistage stochastic linear programming with fixed recourse
基于自适应分区的 SDDP 算法,用于具有固定资源的多级随机线性规划
Partition-based decomposition algorithms for two-stage Stochastic integer programs with continuous recourse
  • DOI:
    10.1007/s10479-017-2689-7
  • 发表时间:
    2020-01
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    B. S. Pay;Yongjia Song
  • 通讯作者:
    B. S. Pay;Yongjia Song
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yongjia Song其他文献

Clustering of cyclones in the ARPEGE general circulation model
ARPEGE 大气环流模型中气旋的聚类
  • DOI:
    10.1111/j.1600-0870.2007.00307.x
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N. G. Kvamstø;Yongjia Song;Ivar A. Seierstad;A. Sorteberg;D. Stephenson
  • 通讯作者:
    D. Stephenson
P-wave attenuation and dispersion in a fluid-saturated rock with aligned rectangular cracks
具有对齐矩形裂缝的流体饱和岩石中的 P 波衰减和色散
  • DOI:
    10.1016/j.mechmat.2020.103409
  • 发表时间:
    2020-08
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Yongjia Song;Hengshan Hu;Bo Han
  • 通讯作者:
    Bo Han
Study protocol for a randomized controlled trial: evaluating the effect of isokinetic eccentric training of the hamstring on knee function and walking function after total knee arthroplasty
随机对照试验研究方案:评估等速偏心训练腘绳肌对全膝关节置换术后膝关节功能和步行功能的影响
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Tianjun Zhai;Yongjia Song;Jianqing Su;Ru;Jie Wang;Zengqiao Zhang;Wei Feng
  • 通讯作者:
    Wei Feng
Chance‐constrained multi‐terminal network design problems
机会约束多终端网络设计问题
  • DOI:
    10.1002/nav.21630
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yongjia Song;Minjiao Zhang
  • 通讯作者:
    Minjiao Zhang
Evacuation network design under road capacity improvement and uncertainty: second-order cone programming reformulations and Benders decomposition
道路通行能力提升与不确定性下的疏散网络设计:二阶锥规划重构与 Benders 分解
  • DOI:
    10.1016/j.ejor.2025.04.030
  • 发表时间:
    2025-11-01
  • 期刊:
  • 影响因子:
    6.000
  • 作者:
    Qing-Mi Hu;Shaolong Hu;Zhijie Sasha Dong;Yongjia Song
  • 通讯作者:
    Yongjia Song

Yongjia Song的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yongjia Song', 18)}}的其他基金

An Integrated Housing Design and Logistics Operations Modeling and Analysis Framework for Hurricane Relief
飓风救援的综合住房设计和物流运营建模与分析框架
  • 批准号:
    2053660
  • 财政年份:
    2021
  • 资助金额:
    $ 8.49万
  • 项目类别:
    Standard Grant
CAREER: An Adaptive Stochastic Look-ahead Framework for Disaster Relief Logistics under Forecast Uncertainty
职业生涯:预测不确定性下救灾物流的自适应随机前瞻框架
  • 批准号:
    2045744
  • 财政年份:
    2021
  • 资助金额:
    $ 8.49万
  • 项目类别:
    Standard Grant
An Adaptive Partition-based Approach for Solving Large-Scale Stochastic Programs
一种求解大规模随机规划的自适应划分方法
  • 批准号:
    1562245
  • 财政年份:
    2016
  • 资助金额:
    $ 8.49万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: KKM-Type Theorems for Piercing Numbers, Mass Partition, and Fair Division
职业:刺穿数、质量划分和公平除法的 KKM 型定理
  • 批准号:
    2336239
  • 财政年份:
    2024
  • 资助金额:
    $ 8.49万
  • 项目类别:
    Continuing Grant
Complexity of Partition Problems
分区问题的复杂性
  • 批准号:
    RGPIN-2019-04221
  • 财政年份:
    2022
  • 资助金额:
    $ 8.49万
  • 项目类别:
    Discovery Grants Program - Individual
Facteurs contrôlant la limite nord de répartition de l'érable à sucre
苏克雷可控制分区的北部限制因素
  • 批准号:
    RGPIN-2020-06245
  • 财政年份:
    2022
  • 资助金额:
    $ 8.49万
  • 项目类别:
    Discovery Grants Program - Individual
Partition into primes
划分为素数
  • 批准号:
    2579032
  • 财政年份:
    2022
  • 资助金额:
    $ 8.49万
  • 项目类别:
    Studentship
Post-Partition Shakespeare: Northern Ireland's Bard in History, Politics and Culture (1921-Present)
分治后莎士比亚:北爱尔兰历史、政治和文化领域的吟游诗人(1921 年至今)
  • 批准号:
    2778356
  • 财政年份:
    2022
  • 资助金额:
    $ 8.49万
  • 项目类别:
    Studentship
SaTC: CORE: Small: Partition-Oblivious Real-Time Hierarchical Scheduling
SaTC:核心:小型:分区无关的实时分层调度
  • 批准号:
    2302610
  • 财政年份:
    2022
  • 资助金额:
    $ 8.49万
  • 项目类别:
    Standard Grant
CC* Compute: GPU HPC Cluster Partition for Research, Education, and Student Success
CC* 计算:GPU HPC 集群分区促进研究、教育和学生的成功
  • 批准号:
    2201435
  • 财政年份:
    2022
  • 资助金额:
    $ 8.49万
  • 项目类别:
    Standard Grant
BORDER CROSSINGS: Exploring history and community through virtual reality at the 75th anniversary of the Partition
边境穿越:在印巴分治 75 周年之际通过虚拟现实探索历史和社区
  • 批准号:
    AH/X000184/1
  • 财政年份:
    2022
  • 资助金额:
    $ 8.49万
  • 项目类别:
    Research Grant
CBMS Conference: Ramanujan's Partition Congruences, Mock Theta Functions, and Beyond
CBMS 会议:拉马努金的划分同余、模拟 Theta 函数及其他
  • 批准号:
    2132649
  • 财政年份:
    2021
  • 资助金额:
    $ 8.49万
  • 项目类别:
    Standard Grant
Category partition black-box software testing: theory, tool support and experiments
类别划分黑盒软件测试:理论、工具支持和实验
  • 批准号:
    RGPIN-2016-06214
  • 财政年份:
    2021
  • 资助金额:
    $ 8.49万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了