CAREER: TUNING QUANTUM STATES OF MAGNETIC TOPOLOGICAL SYSTEMS WITH PRESSURE
职业:利用压力调节磁拓扑系统的量子态
基本信息
- 批准号:2045760
- 负责人:
- 金额:$ 59.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Non-technical abstract: Quantum magnets are promising platforms for quantum computation and future green technologies. As an emerging and dynamically evolving research area, adequate understanding of fundamental physics and design principles of these materials are still lacking. The goal of this project is to use external pressure as a control parameter to reveal complex quantum phases and advance our understanding and control ability of the emergent phases. The studies provide insights to further synthetic efforts of novel quantum materials. The integrated education and outreach activities focus on bridging the gap of STEM workforce education in Alabama by (i) directly training next generation scientists at multi-scale facilities with a focus on women and underrepresented minorities, (ii) enhancing STEM research and education capacity in Alabama through organizing Lecture Series on Modern Synchrotron Techniques and Applications, (iii) contributing to the UAB physics-STEM Teaching and Learning Incubator program to enhance state-wide high school science teacher training, and (iv) promoting awareness in STEM career pathway and interest in scientific discovery in general public and disseminating scientific discoveries to broad audience through volunteering at McWane Science Center. Technical abstract: Intrinsic magnetic topological materials exhibit exotic topological quantum phenomena with great potential applications in future quantum computation and spintronics. Using external pressure as a tuning knob, the project targets to experimentally discover novel quantum phenomena, realize ideal magnetic Weyl state in real materials, and unravel the interplay of magnetic structure, crystal symmetry, and topological states in representative magnetic Dirac materials. The research employs a suite of cutting-edge experimental techniques, including the state-of-the-art synchrotron-based spectroscopy, scattering, and diffraction techniques, and lab-based transport and magnetization techniques combining with diamond anvil cell and piezoelectric uniaxial strain cell. The comprehensive experimental results aim to benchmark theoretical models for treatment of interplay of many-body physics and topology. The fundamental understanding of the emergent properties helps to harness the magnetic topological materials for future applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:量子磁体是量子计算和未来绿色技术的有前途的平台。作为一个新兴的和动态发展的研究领域,这些材料的基本物理和设计原则的充分理解仍然缺乏。该项目的目标是利用外部压力作为控制参数来揭示复杂的量子相,并提高我们对涌现相的理解和控制能力。这些研究为进一步合成新型量子材料提供了见解。综合教育和外展活动的重点是弥合亚拉巴马州STEM劳动力教育的差距,方法是(i)在多规模设施直接培训下一代科学家,重点是妇女和代表性不足的少数民族,(ii)通过组织现代同步加速器技术和应用系列讲座,(iii)为UAB物理-STEM教学孵化器计划做出贡献,以加强全州高中科学教师的培训,和(四)提高公众对STEM职业道路的认识和对科学发现的兴趣,并通过志愿服务向广大受众传播科学发现在麦克韦恩科学中心技术摘要:内禀磁性拓扑材料表现出奇异的拓扑量子现象,在未来的量子计算和自旋电子学中具有重要的应用前景。该项目利用外部压力作为调谐旋钮,目标是通过实验发现新的量子现象,在真实的材料中实现理想的磁性Weyl态,并揭示代表性磁性Dirac材料中磁性结构,晶体对称性和拓扑状态的相互作用。该研究采用了一套尖端的实验技术,包括最先进的同步加速器光谱,散射和衍射技术,以及基于实验室的传输和磁化技术,结合金刚石砧单元和压电单轴应变单元。综合实验结果的目的是基准的理论模型治疗的相互作用的多体物理和拓扑结构。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Evolution of magnetism, valence, and crystal lattice in EuCd2As2 under pressure
- DOI:10.1103/physrevb.107.245121
- 发表时间:2023-06
- 期刊:
- 影响因子:3.7
- 作者:Greeshma C. Jose;Kaleb C. Burrage;Jose L. Gonzalez Jimenez;W. Xie;B. Lavina;Jiyong Zhao;E. Alp;Dongzhou Zhang;Yuming Xiao;Y. Vohra;Wenli Bi
- 通讯作者:Greeshma C. Jose;Kaleb C. Burrage;Jose L. Gonzalez Jimenez;W. Xie;B. Lavina;Jiyong Zhao;E. Alp;Dongzhou Zhang;Yuming Xiao;Y. Vohra;Wenli Bi
Hidden Hydroxides in KOH-Grown BaNiO 3 Crystals: A Potential Link to Their Catalytic Behavior
KOH 生长的 BaNiO 3 晶体中隐藏的氢氧化物:与其催化行为的潜在联系
- DOI:10.1021/acs.chemmater.3c02482
- 发表时间:2023
- 期刊:
- 影响因子:8.6
- 作者:Jin, Lun;Wang, Haozhe;Xu, Xianghan;Ni, Danrui;Yang, Chen;Ku, Yu-Chieh;Liu, Cheng-En;Kuo, Chang-Yang;Chang, Chun-Fu;Sereika, Raimundas
- 通讯作者:Sereika, Raimundas
Pressure-induced crystal structural and insulator-metal transitions in the quantum spin liquid candidate CsYbSe2
量子自旋液体候选物 CsYbSe2 中压力诱导的晶体结构和绝缘体-金属转变
- DOI:10.1103/physrevb.108.174106
- 发表时间:2023
- 期刊:
- 影响因子:3.7
- 作者:Sereika, Raimundas;Xu, Xilong;Wang, Yizhou;Yang, Li;Zhang, Dongzhou;Chariton, Stella;Xing, Jie;Sefat, Athena;Vohra, Yogesh K.;Bi, Wenli
- 通讯作者:Bi, Wenli
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wenli Bi其他文献
Magnetic phase diagram of
ɛ′
-FeH
ɛ′的磁相图
- DOI:
10.1103/physrevb.101.020405 - 发表时间:
2020 - 期刊:
- 影响因子:3.7
- 作者:
J. Ying;J. Ying;Jiyong Zhao;Wenli Bi;W. Bi;Wenli Bi;E. Alp;Yuming Xiao;P. Chow;G. Shen;V. Struzhkin - 通讯作者:
V. Struzhkin
Decoupling and peak prediction of industrial land carbon emissions in East China for developing countries’ prosperous regions
针对发展中国家繁荣地区的华东地区工业用地碳排放脱钩与峰值预测
- DOI:
10.1038/s41598-025-90834-2 - 发表时间:
2025-02-20 - 期刊:
- 影响因子:3.900
- 作者:
Chenfei Zhang;Xiaoyu Ren;Weijun Zhao;Pengtao Wang;Wenli Bi;Zhaoli Du - 通讯作者:
Zhaoli Du
Multistep synthesis of the SrFeO<sub>2</sub>F perovskite oxyfluoride via the SrFeO<sub>2</sub> infinite-layer intermediate
- DOI:
10.1016/j.jfluchem.2013.12.007 - 发表时间:
2014-03-01 - 期刊:
- 影响因子:
- 作者:
Colin K. Blakely;Joshua D. Davis;Shaun R. Bruno;Shannon K. Kraemer;Mengze Zhu;Xianglin Ke;Wenli Bi;E. Ercan Alp;Viktor V. Poltavets - 通讯作者:
Viktor V. Poltavets
Pressure-induced superconductivity in europium metal
铕金属中的压力诱导超导性
- DOI:
10.1088/1742-6596/215/1/012034 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
M. Debessai;Takahiro Matsuoka;Takahiro Matsuoka;J. Hamlin;J. Hamlin;Wenli Bi;Y. Meng;K. Shimizu;J. Schilling - 通讯作者:
J. Schilling
Wenli Bi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wenli Bi', 18)}}的其他基金
MRI: Acquisition of a Quantum Design Physical Properties Measurement System for Materials Research and Education
MRI:获取用于材料研究和教育的量子设计物理特性测量系统
- 批准号:
2215143 - 财政年份:2022
- 资助金额:
$ 59.67万 - 项目类别:
Standard Grant
RII Track-4: Pressure Tuning of Magnetic Topological Insulators using Synchrotron X-ray Techniques
RII Track-4:使用同步加速器 X 射线技术对磁拓扑绝缘体进行压力调谐
- 批准号:
2033131 - 财政年份:2021
- 资助金额:
$ 59.67万 - 项目类别:
Standard Grant
相似海外基金
Scalable and Automated Tuning of Spin-based Quantum Computer Architectures
基于自旋的量子计算机架构的可扩展和自动调整
- 批准号:
2887634 - 财政年份:2024
- 资助金额:
$ 59.67万 - 项目类别:
Studentship
Efficient tuning of quantum devices using machine learning
使用机器学习有效调整量子器件
- 批准号:
2886876 - 财政年份:2023
- 资助金额:
$ 59.67万 - 项目类别:
Studentship
Electronic phase tuning in organic two-dimensional hole-gas system and organic quantum electronics
有机二维空穴气体系统中的电子相位调谐和有机量子电子学
- 批准号:
22H04959 - 财政年份:2022
- 资助金额:
$ 59.67万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Enabling large-scale silicon spin qubit platform using memristor-based neuromorphic circuits for quantum dots auto-tuning
使用基于忆阻器的神经形态电路实现量子点自动调节的大规模硅自旋量子位平台
- 批准号:
RGPIN-2019-06183 - 财政年份:2022
- 资助金额:
$ 59.67万 - 项目类别:
Discovery Grants Program - Individual
CMOS-OxRAM integrated circuits for low-power AI and cryogenic quantum dot auto-tuning
用于低功耗人工智能和低温量子点自动调谐的 CMOS-OxRAM 集成电路
- 批准号:
580722-2022 - 财政年份:2022
- 资助金额:
$ 59.67万 - 项目类别:
Alliance Grants
Enabling large-scale silicon spin qubit platform using memristor-based neuromorphic circuits for quantum dots auto-tuning
使用基于忆阻器的神经形态电路实现量子点自动调节的大规模硅自旋量子位平台
- 批准号:
RGPIN-2019-06183 - 财政年份:2021
- 资助金额:
$ 59.67万 - 项目类别:
Discovery Grants Program - Individual
Strain-tuning electronic structure and quantum many-body interactions
应变调节电子结构和量子多体相互作用
- 批准号:
EP/T02108X/1 - 财政年份:2020
- 资助金额:
$ 59.67万 - 项目类别:
Research Grant
Enabling large-scale silicon spin qubit platform using memristor-based neuromorphic circuits for quantum dots auto-tuning
使用基于忆阻器的神经形态电路实现量子点自动调节的大规模硅自旋量子位平台
- 批准号:
RGPIN-2019-06183 - 财政年份:2020
- 资助金额:
$ 59.67万 - 项目类别:
Discovery Grants Program - Individual
Enabling large-scale silicon spin qubit platform using memristor-based neuromorphic circuits for quantum dots auto-tuning
使用基于忆阻器的神经形态电路实现量子点自动调节的大规模硅自旋量子位平台
- 批准号:
RGPIN-2019-06183 - 财政年份:2019
- 资助金额:
$ 59.67万 - 项目类别:
Discovery Grants Program - Individual
Machine learning for quantum device tuning and simulation
用于量子器件调谐和模拟的机器学习
- 批准号:
2266701 - 财政年份:2019
- 资助金额:
$ 59.67万 - 项目类别:
Studentship














{{item.name}}会员




