CAREER: Discovering and Understanding Layered Nickelate Superconductors

职业:发现和理解层状镍酸盐超导体

基本信息

  • 批准号:
    2045826
  • 负责人:
  • 金额:
    $ 52.21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-02-01 至 2026-01-31
  • 项目状态:
    未结题

项目摘要

NONTECHNICAL SUMMARYThis award supports an integrated research, outreach, and educational effort to advance the fundamental understanding of superconducting materials. Superconductivity is a quantum state of matter whereby electrons move through a material without resistance, namely, without losing any energy to heat. Superconducting materials are of paramount importance to different technologies: from magnetic resonance imaging machines to accelerators for high-energy physics, and magnetic levitating trains. However, their usefulness is often restricted by the prohibitively low temperatures at which superconductivity usually emerges. Increasing this transition temperature and discovering new superconductors has been limited by the lack of consensus as to what causes superconductivity in some classes of materials. One of these classes is represented by copper oxides whose discovery in the 1980s had a profound influence on physics as they could superconduct at a higher temperature than any material known at the time. This project will use advanced computational and theoretical methods to investigate nickel oxides - promising candidate materials for superconductivity based on the proximity of nickel to copper in the periodic table. The goal of the project is to discover a new family of nickel-based superconductors while providing insights into the origin of high-temperature superconductivity. The team will develop computational approaches suited for superconducting materials and perform simulations of electrons to establish the differences and similarities between the physics of nickel and copper oxides. The discovery of the first family of nickel oxide-based superconductors will open new venues and establish the relevant parameters that give rise to superconductivity. This is a necessary ingredient to enhance the temperatures at which superconductivity emerges and to provide routes to create novel superconducting materials. The research activities are integrated with an educational and outreach program to bring superconductivity and computational modeling in physics to students and to the general public in metro Phoenix. The program has an emphasis on mentoring high-school students from underserved areas via an outreach day for high-school girls in majority-Latino neighborhoods, and through a series of computational summer workshops for students from low-income areas. The broader impact of these activities will be early exposure to research for young talented students who generally do not see science career paths represented in their communities. The PI will also develop demos for open house events to educate and engage the general public on superconducting materials. Finally, this award will contribute to forming tomorrow's scientific and technological workforce by recruiting and advising undergraduate and graduate students to participate in condensed matter physics and materials research. TECHNICAL SUMMARY This award supports an integrated research, outreach, and educational effort to advance the fundamental understanding of superconducting materials. More than a century after its discovery, superconductivity remains one of the most active areas of condensed matter physics research. The discovery of iron-based superconductors in 2006 reinvigorated the field after an intensive exploration of cuprates from the late 1980s. However, pinpointing the mechanism of high-temperature superconductivity and determining why the characteristics of high-temperature superconducting materials are so special are fundamental questions yet to be answered. Among the multiple approaches to addressing these questions has been the search for cuprate analog materials. In this context, targeting nickelates is an obvious strategy since nickel and copper are next to each other in the periodic table. This project will develop theoretical and computational approaches to investigate superconductivity in layered nickel oxide materials. The explicit goal of the proposed research is to discover and establish the theoretical foundations of the first family of nickelate superconductors while addressing their behavior in a microscopic way. The theory approach will run the gamut from fast density functional theory to computationally intensive quasiparticle-self consistent GW+dynamical mean-field theory calculations. With this methodology, the team will determine the complexity of the layered nickelate phase diagram, the relationship between competing phases therein and superconductivity, and ultimately provide new insights into the nature and origin of high temperature superconductivity. The systematic comparison with superconducting cuprates will lay the foundation of the relevant parameters that give rise to high-temperature superconductivity and establish routes to create novel superconducting materials. Integrated with the research efforts, the PI will establish an educational and outreach program to bring superconductivity and computational modeling in physics to students and to the general public in metro Phoenix through i) a computational summer workshop for high school students from low-income areas, ii) an outreach day for high school girls in majority-Latino neighborhoods, and iii) open house events centered around superconductivity. These outreach and educational efforts will directly benefit the community Arizona State University serves by exposing a wide cross-section of people to science and by influencing younger generations that generally do not see science career paths represented in their communities. Finally, this award will contribute to forming tomorrow's scientific and technological workforce by recruiting undergraduate and graduate students to participate in condensed matter physics research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持综合研究,推广和教育工作,以促进对超导材料的基本理解。超导性是物质的一种量子状态,电子在其中无阻力地穿过材料,即没有损失任何能量。超导材料对不同的技术至关重要:从磁共振成像机器到高能物理加速器和磁悬浮列车。然而,它们的实用性往往受到超导电性通常出现的极低温度的限制。提高这种转变温度和发现新的超导体一直受到限制,因为缺乏共识是什么原因导致某些类别的材料超导。其中一类以氧化铜为代表,其在20世纪80年代的发现对物理学产生了深远的影响,因为它们可以在比当时已知的任何材料更高的温度下超导。 该项目将使用先进的计算和理论方法来研究镍氧化物-基于镍在周期表中与铜的接近性,有希望成为超导体的候选材料。 该项目的目标是发现一个新的镍基超导体家族,同时提供对高温超导起源的见解。该团队将开发适用于超导材料的计算方法,并进行电子模拟,以确定镍和铜氧化物物理学之间的差异和相似之处。第一个氧化镍基超导体家族的发现将开辟新的领域,并建立产生超导性的相关参数。这是一个必要的成分,以提高超导性出现的温度,并提供路线,创造新的超导材料。 研究活动与教育和推广计划相结合,为凤凰城的学生和公众带来超导和物理计算建模。该计划的重点是通过为拉丁裔社区的高中女生举办外展日,并通过为低收入地区的学生举办一系列计算夏季研讨会,来指导来自服务不足地区的高中生。 这些活动的更广泛的影响将是早期接触研究的年轻有才华的学生谁一般不看到科学的职业道路在他们的社区代表。PI还将为开放日活动开发演示,以教育和吸引公众对超导材料的关注。 最后,该奖项将通过招募和建议本科生和研究生参与凝聚态物理和材料研究,为形成未来的科学和技术劳动力做出贡献。该奖项支持综合研究,推广和教育工作,以促进对超导材料的基本理解。超导现象在被发现后的世纪,仍然是凝聚态物理学研究中最活跃的领域之一。2006年铁基超导体的发现,在20世纪80年代后期对铜酸盐进行了密集的探索之后,重振了该领域。然而,精确定位高温超导性的机制以及确定为什么高温超导材料的特性如此特殊是尚未回答的基本问题。在解决这些问题的多种方法中,一直在寻找铜酸盐类似物材料。在这种情况下,针对镍酸盐是一个明显的战略,因为镍和铜在周期表中彼此相邻。 本计画将发展理论与计算方法来研究层状镍氧化物材料的超导电性。拟议研究的明确目标是发现和建立第一家族镍酸盐超导体的理论基础,同时以微观方式解决其行为。理论方法将运行从快速密度泛函理论的计算密集型准粒子自洽GW+动态平均场理论计算的色域。通过这种方法,该团队将确定层状镍酸盐相图的复杂性,其中竞争相与超导性之间的关系,并最终为高温超导性的性质和起源提供新的见解。与超导铜酸盐的系统比较将为高温超导的相关参数奠定基础,并为创造新型超导材料奠定基础。与研究工作相结合,PI将建立一个教育和推广计划,通过i)为低收入地区的高中生提供计算夏季研讨会,ii)为大多数拉丁裔社区的高中女生提供外展日,iii)围绕超导性的开放日活动。这些推广和教育工作将直接受益于社区亚利桑那州立大学通过暴露广泛的跨部门的人科学服务,并通过影响年轻一代,一般不认为科学的职业道路在他们的社区代表。最后,该奖项将通过招募本科生和研究生参与凝聚态物理研究,为培养未来的科学技术人才做出贡献。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Electronic structure of higher-order Ruddlesden-Popper nickelates
  • DOI:
    10.1103/physrevb.105.085150
  • 发表时间:
    2022-02
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Myung-Chul Jung;Jesse Kapeghian;Chase Hanson;B. Pamuk;A. Botana
  • 通讯作者:
    Myung-Chul Jung;Jesse Kapeghian;Chase Hanson;B. Pamuk;A. Botana
Role of Oxygen States in the Low Valence Nickelate La4Ni3O8
  • DOI:
    10.1103/physrevx.12.011055
  • 发表时间:
    2022-03-22
  • 期刊:
  • 影响因子:
    12.5
  • 作者:
    Shen, Y.;Sears, J.;Dean, M. P. M.
  • 通讯作者:
    Dean, M. P. M.
Correlated electronic structure of a quintuple-layer nickelate
  • DOI:
    10.1103/physrevb.105.085118
  • 发表时间:
    2021-11
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    H. LaBollita;A. Botana
  • 通讯作者:
    H. LaBollita;A. Botana
Conductivity of infinite-layer NdNiO2 as a probe of spectator bands
  • DOI:
    10.1103/physrevb.107.205155
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    H. LaBollita;A. Hampel;Jonathan Karp;A. Botana;A. Millis
  • 通讯作者:
    H. LaBollita;A. Hampel;Jonathan Karp;A. Botana;A. Millis
Orbital polarization, charge transfer, and fluorescence in reduced-valence nickelates
  • DOI:
    10.1103/physrevb.107.165124
  • 发表时间:
    2023-04-12
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Norman,M. R.;Botana,A. S.;Dean,M. P. M.
  • 通讯作者:
    Dean,M. P. M.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Antia Botana其他文献

Antia Botana的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Antia Botana', 18)}}的其他基金

Collaborative Research: DMREF: Discovery of unconventional superconductors by design
合作研究:DMREF:通过设计发现非常规超导体
  • 批准号:
    2323971
  • 财政年份:
    2023
  • 资助金额:
    $ 52.21万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Representing, Discovering, and Assembling Motifs for Video Understanding
职业:表示、发现和组装视频理解的主题
  • 批准号:
    2238769
  • 财政年份:
    2023
  • 资助金额:
    $ 52.21万
  • 项目类别:
    Continuing Grant
Discovering and understanding quantum spin liquids
发现和理解量子自旋液体
  • 批准号:
    RGPIN-2018-06118
  • 财政年份:
    2022
  • 资助金额:
    $ 52.21万
  • 项目类别:
    Discovery Grants Program - Individual
ADPKD: Understanding immunosuppression mechanisms and discovering treatment
ADPKD:了解免疫抑制机制并发现治疗方法
  • 批准号:
    10274630
  • 财政年份:
    2021
  • 资助金额:
    $ 52.21万
  • 项目类别:
ADPKD: Understanding immunosuppression mechanisms and discovering treatment
ADPKD:了解免疫抑制机制并发现治疗方法
  • 批准号:
    10468127
  • 财政年份:
    2021
  • 资助金额:
    $ 52.21万
  • 项目类别:
ADPKD: Understanding immunosuppression mechanisms and discovering treatment
ADPKD:了解免疫抑制机制并发现治疗方法
  • 批准号:
    10633246
  • 财政年份:
    2021
  • 资助金额:
    $ 52.21万
  • 项目类别:
Discovering and understanding quantum spin liquids
发现和理解量子自旋液体
  • 批准号:
    RGPIN-2018-06118
  • 财政年份:
    2021
  • 资助金额:
    $ 52.21万
  • 项目类别:
    Discovery Grants Program - Individual
Discovering and understanding quantum spin liquids
发现和理解量子自旋液体
  • 批准号:
    RGPIN-2018-06118
  • 财政年份:
    2020
  • 资助金额:
    $ 52.21万
  • 项目类别:
    Discovery Grants Program - Individual
Discovering and understanding quantum spin liquids
发现和理解量子自旋液体
  • 批准号:
    RGPIN-2018-06118
  • 财政年份:
    2019
  • 资助金额:
    $ 52.21万
  • 项目类别:
    Discovery Grants Program - Individual
A multi-modal streaming approach to understanding aided speech perception in noise: discovering relationships between device limitations, perceptual abilities, and neuro-modulation of feature coding
一种理解噪声中辅助语音感知的多模态流方法:发现设备限制、感知能力和特征编码的神经调制之间的关系
  • 批准号:
    10062439
  • 财政年份:
    2019
  • 资助金额:
    $ 52.21万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了