CAREER: Representing, Discovering, and Assembling Motifs for Video Understanding

职业:表示、发现和组装视频理解的主题

基本信息

  • 批准号:
    2238769
  • 负责人:
  • 金额:
    $ 59.81万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-02-15 至 2028-01-31
  • 项目状态:
    未结题

项目摘要

This project will build innovative technology to allow computers to understand temporal phenomena, such as human actions in videos, with the potential of transforming applications across security, health, and robotics. Temporal phenomena exhibit structure at various time scales—long events (e.g., breakfast) are composed of multiple long-term activities (e.g., cooking an omelet), which in turn are composed of various atomic actions (e.g., cutting onions). This project will develop computational representations of temporal phenomena that capture how concepts evolve over time by accentuating temporal cues in videos. Leveraging these representations, this work will create software that can discover distinctive recurring atomic actions from video collections and learn to compose these atomic actions to understand and explain long-term, complex temporal phenomena. The outcomes of this project will enable computers to be significantly better at recognizing complex activities, detecting anomalies, and forecasting future actions. The developed technologies have the potential to address challenges in several areas, such as analyzing weather patterns and forecasting extreme events, provenance search for malicious content on the internet, and indexing and searching internet-scale video collections using natural activity-level queries. Integrated with the research is a comprehensive plan for education, mentoring, and outreach, including training students in research at multiple levels, contributing to curriculum development for undergraduate and graduate courses, and designing outreach programs to attract diverse students at multiple levels.At a technical level, this project will address fundamental challenges in understanding long-term temporal phenomena. At the core of this project is the notion of ‘motifs’—distinctive repeating temporal patterns—that can be assembled into long-term narratives, such as activities. The research program seeks advances in three key areas: (a) unsupervised temporal representation learning, where this work will develop disentangled temporal representations that can better model temporal phenomena, (b) discovering motifs, which will develop a large scale framework for discovering distinctive repeating temporal patterns as atomic actions, from unlabeled videos, which can help understand long-term activities, and (c) learning to assemble motifs to decompose actions. The project presents scalable strategies to learn implicit and explicit stochastic grammars of actions from unlabeled videos, revisiting a long-standing problem using contemporary data-driven methods. This research effort provides a roadmap for exciting new research directions in video understanding.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将建立创新技术,使计算机能够理解时间现象,例如视频中的人类行为,并有可能改变安全,健康和机器人技术的应用。时间现象在各种时间尺度上表现出结构-长事件(例如,早餐)由多个长期活动(例如,烹饪煎蛋卷),其又由各种原子动作组成(例如,切洋葱)。该项目将开发时间现象的计算表示,通过强调视频中的时间线索来捕捉概念如何随着时间的推移而演变。利用这些表示,这项工作将创建软件,可以从视频集合中发现独特的重复原子动作,并学习组合这些原子动作,以理解和解释长期复杂的时间现象。该项目的成果将使计算机能够更好地识别复杂活动,检测异常情况并预测未来的行动。开发的技术有可能解决几个领域的挑战,例如分析天气模式和预测极端事件,在互联网上搜索恶意内容的来源,以及使用自然活动级查询索引和搜索互联网规模的视频集合。与研究相结合的是一个全面的教育,指导和推广计划,包括在多个层次上对学生进行研究培训,为本科和研究生课程的课程开发做出贡献,并设计推广计划以吸引多个层次的不同学生。在技术层面上,该项目将解决理解长期时间现象的基本挑战。这个项目的核心是“主题”的概念-独特的重复时间模式-可以组装成长期的叙述,如活动。该研究计划寻求在三个关键领域取得进展:(a)无监督的时间表示学习,其中这项工作将开发可以更好地建模时间现象的解开的时间表示,(B)发现图案,这将开发用于从未标记的视频中发现独特的重复时间模式作为原子动作的大规模框架,这可以帮助理解长期活动,以及(c)学习组装模体以分解动作。该项目提出了可扩展的策略,从未标记的视频中学习动作的隐式和显式随机语法,使用当代数据驱动的方法重新审视一个长期存在的问题。这项研究成果为视频理解领域令人兴奋的新研究方向提供了路线图。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Chop & Learn: Recognizing and Generating Object-State Compositions
  • DOI:
    10.1109/iccv51070.2023.01852
  • 发表时间:
    2023-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nirat Saini;Hanyu Wang;Archana Swaminathan;Vinoj Jayasundara;Bo He;Kamal Gupta;Abhinav Shrivastava
  • 通讯作者:
    Nirat Saini;Hanyu Wang;Archana Swaminathan;Vinoj Jayasundara;Bo He;Kamal Gupta;Abhinav Shrivastava
ASIC: Aligning Sparse in-the-wild Image Collections
  • DOI:
    10.1109/iccv51070.2023.00382
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kamal Gupta;V. Jampani;Carlos Esteves;Abhinav Shrivastava;A. Makadia;Noah Snavely;Abhishek Kar
  • 通讯作者:
    Kamal Gupta;V. Jampani;Carlos Esteves;Abhinav Shrivastava;A. Makadia;Noah Snavely;Abhishek Kar
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Abhinav Shrivastava其他文献

MOST: Multiple Object localization with Self-supervised Transformers for object discovery
MOST:使用自监督 Transformer 进行多对象定位,用于对象发现
Customize-A-Video: One-Shot Motion Customization of Text-to-Video Diffusion Models
定制视频:文本到视频扩散模型的一次性运动定制
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yixuan Ren;Yang Zhou;Jimei Yang;Jing Shi;Difan Liu;Feng Liu;Mingi Kwon;Abhinav Shrivastava
  • 通讯作者:
    Abhinav Shrivastava
TCT-341 OCT Predictors of Side Branch Restenosis During LM Bifurcation Angioplasty Using DK Crush Technique
  • DOI:
    10.1016/j.jacc.2021.09.1194
  • 发表时间:
    2021-11-09
  • 期刊:
  • 影响因子:
  • 作者:
    Ankush Gupta;Abhinav Shrivastava;Sanya Chhikara
  • 通讯作者:
    Sanya Chhikara
KINETIC STUDIES OF L-ASPARAGINASE FROM Penicillium digitatum
指状青霉L-天冬酰胺酶的动力学研究
Towards a Unifying Framework for Formal Theories of Novelty
走向形式新颖理论的统一框架
  • DOI:
    10.1609/aaai.v35i17.17766
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Boult;Przemyslaw A. Grabowicz;D. Prijatelj;Roni Stern;L. Holder;J. Alspector;Mohsen Jafarzadeh;T. Ahmad;A. Dhamija;Chunchun Li;S. Cruz;Abhinav Shrivastava;Carl Vondrick;W. Scheirer
  • 通讯作者:
    W. Scheirer

Abhinav Shrivastava的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

EAGER: Accelerating decarbonization by representing catalysts with natural language
EAGER:通过用自然语言表示催化剂来加速脱碳
  • 批准号:
    2345734
  • 财政年份:
    2024
  • 资助金额:
    $ 59.81万
  • 项目类别:
    Standard Grant
Representing Coal Famine: Energy Crises and the British Press, 1870-1920
代表煤炭饥荒:能源危机和英国媒体,1870-1920 年
  • 批准号:
    2894901
  • 财政年份:
    2023
  • 资助金额:
    $ 59.81万
  • 项目类别:
    Studentship
Methodology for inferring directed graphs representing generative processes
推断表示生成过程的有向图的方法
  • 批准号:
    2789004
  • 财政年份:
    2023
  • 资助金额:
    $ 59.81万
  • 项目类别:
    Studentship
Representing, Debating & Protesting the Nation: The Visual Legacy of Sport
代表、辩论
  • 批准号:
    FT230100681
  • 财政年份:
    2023
  • 资助金额:
    $ 59.81万
  • 项目类别:
    ARC Future Fellowships
Enacting Climate Change Education through representing scientists’ practice
通过代表科学家的实践开展气候变化教育
  • 批准号:
    DP230101533
  • 财政年份:
    2023
  • 资助金额:
    $ 59.81万
  • 项目类别:
    Discovery Projects
Interdisciplinary approaches to representing workers conditions in performance
在绩效中体现员工状况的跨学科方法
  • 批准号:
    2890420
  • 财政年份:
    2023
  • 资助金额:
    $ 59.81万
  • 项目类别:
    Studentship
Representing Human Anatomy for Computation and Communication: Synergistic Development of an Anatomical Ontology and Semantically-Augmented Anatomical Graphics
代表人体解剖学进行计算和通信:解剖本体论和语义增强解剖图形的协同发展
  • 批准号:
    10635511
  • 财政年份:
    2023
  • 资助金额:
    $ 59.81万
  • 项目类别:
Exploring new indicators representing the hygroscopicity of atmospheric organic aerosol
探索代表大气有机气溶胶吸湿性的新指标
  • 批准号:
    23H00515
  • 财政年份:
    2023
  • 资助金额:
    $ 59.81万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Representing structural haplotypes and complex genetic variation in pan-genome graphs
表示泛基因组图中的结构单倍型和复杂的遗传变异
  • 批准号:
    10832934
  • 财政年份:
    2023
  • 资助金额:
    $ 59.81万
  • 项目类别:
Constructing and representing Ontologies from Ontology-oriented Annotations
从面向本体的注释构建和表示本体
  • 批准号:
    23K11237
  • 财政年份:
    2023
  • 资助金额:
    $ 59.81万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了