CAREER: An electrokinetically driven micro-device for rapid purification and characterization of exosomes
职业:用于快速纯化和表征外泌体的电动驱动微型设备
基本信息
- 批准号:2046037
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Cancer is among the leading causes of morbidity and mortality worldwide, yet about 46% of patients forsake routine screening because of the invasive nature of such procedures, including tissue biopsy. Therefore, there are significant efforts in basic and clinical research to develop a liquid biopsy, a minimally invasive paradigm for the detection of circulating biomarkers from biofluids. Among circulating biomarkers, exosomes, small particles released by cells that help cells communicate with each other, have drawn a great deal of attention. Exosomes are highly abundant in all biofluids including blood, saliva and urine, and they can provide crucial information to the type of cell, such as a tumor cell, that released them. However, using exosomes as biomarkers for cancer and other diseases has been challenging due to the lack a technology that can reliably isolate and characterize exosomes in a cost-effective and timely manner. This research will lead to a rapid and accurate micro-fabricated device that can quickly and cheaply purify and characterize exosomes from biofluids based on their electrical properties. The immediate focus of this project is to isolate and characterize exosomes related to cancer; however, exosomes are associated with many other diseases, including diabetes, cardiovascular disease, infectious diseases and neurodegenerative disorders. Thus, this novel device could be utilized for a wide range of medical diagnoses and biomedical research, potentially providing frequent, affordable, and early testing for patients. Furthermore this interdisciplinary project crosses the traditional boundaries between electrical engineering, micro/nanofluidics, biology and physics, which will provide students with a unique educational experience during their academic training. This project will expose K-12 students to the field of biomedical microsystems through memorable and exciting hands-on projects and active learning experiences. The education plan will broaden the participation of students from underrepresented groups by recruiting and training female scientists and engineers through the Women in Science and Engineering (WISE) program. These undergraduate students will work closely with graduate students to conduct this research, and they will be mentored by the principal investigator. This project will also educate the public about how micro-nanotechnologies can advance medicine through a YouTube channel and “ThinkTV” program, which will be broadcast in Southwest Ohio.Exosomes (30–150 nm) are released from many cell types into the extracellular space, are distributed in all biofluids. Their compartmental composition and function depend on the originating cell type and they play an important role as a molecular cargo in cell-cell communication. Tumor-derived exosomes have potential use as circulating biomarkers in liquid biopsy for early stage diagnostics and routine clinical monitoring of cancer progression in difficult to access tumor sites. However, rapid and efficient detection of exosomes is challenging owing to their heterogeneity and the complexity of biological samples. The ultimate goal of this CAREER project is to investigate the use of indirect dielectrophoresis (DEP) and impedance probing to purify and identify circulating cancer-derived exosomes from biofluids. This research will employ a novel DEP device on chip to isolate exosomes from biofluids and measure their electrical impedance over a wide frequency spectrum (500 KHz-50 MHz) to establish their dielectric properties. The dielectric properties of the exosomes will then be correlated with their molecular content, biochemical properties, and functionalities in terms of pro-inflammatory responses. This research could ultimately enable minimally invasive liquid biopsies in a clinical setting. It could also open a new avenue for diagnostics and personalized therapeutics based on the ability to quickly isolate and analyze exosomes based on their dielectric properties.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
癌症是全球发病率和死亡率的主要原因之一,但约46%的患者放弃常规筛查,因为此类程序具有侵袭性,包括组织活检。因此,在基础和临床研究中有大量的努力来开发液体活检,这是一种从生物液中检测循环生物标志物的微创范例。在循环生物标记物中,外体是细胞释放的帮助细胞相互沟通的小颗粒,引起了人们的极大关注。外切体在包括血液、唾液和尿液在内的所有生物体液中都非常丰富,它们可以为释放外切体的细胞类型提供关键信息,例如肿瘤细胞。然而,使用外切体作为癌症和其他疾病的生物标记物一直是具有挑战性的,因为缺乏一种能够以经济有效和及时的方式可靠地分离和表征外切体的技术。这项研究将导致一种快速和准确的微制造设备,可以快速和廉价地从生物体液中提纯和表征基于其电学性质的外切体。该项目的直接重点是分离和鉴定与癌症相关的外切体;然而,外切体与许多其他疾病有关,包括糖尿病、心血管疾病、传染病和神经退行性疾病。因此,这种新的设备可以用于广泛的医疗诊断和生物医学研究,潜在地为患者提供频繁、负担得起的早期测试。此外,这一跨学科项目跨越了电气工程、微/纳米流体、生物学和物理学之间的传统界限,将为学生在学术培训期间提供独特的教育体验。这个项目将通过令人难忘和令人兴奋的动手项目和积极的学习经验,让K-12学生接触到生物医学微系统领域。该教育计划将通过女性科学与工程(WISE)计划招募和培训女性科学家和工程师,扩大来自代表性不足群体的学生的参与。这些本科生将与研究生密切合作进行这项研究,他们将得到首席研究员的指导。该项目还将通过YouTube频道和将在俄亥俄州西南部播出的“ThinkTV”节目,教育公众微纳米技术如何推动医学发展。外体(30-150 nm)从许多类型的细胞释放到细胞外空间,分布在所有生物液中。它们的组成和功能取决于起始细胞的类型,它们在细胞间的通讯中扮演着重要的分子货物的角色。肿瘤来源的外切体在液体活检中具有潜在的循环生物标志物的用途,用于早期诊断和常规临床监测难以触及的肿瘤部位的癌症进展。然而,由于外切体的异质性和生物样本的复杂性,快速有效地检测外切体是一项具有挑战性的工作。这个职业项目的最终目标是研究使用间接介电泳法(DEP)和阻抗探测法从生物体液中纯化和鉴定循环癌症来源的外切体。这项研究将使用一种新型的DEP芯片设备来从生物液中分离外切体,并在较宽的频谱(500 kHz-50 MHz)上测量它们的电阻抗,以确定它们的介电性质。然后,外切体的介电特性将与它们的分子含量、生化特性和促炎反应方面的功能相关联。这项研究最终可以在临床环境中实现微创液体活组织检查。它还可以为诊断和个性化治疗开辟一条新的途径,基于基于其介电特性快速分离和分析外显体的能力。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leyla Esfandiari其他文献
Quantitative estimation of electro-osmosis force on charged particles inside a borosilicate resistive-pulse sensor
硼硅酸盐电阻脉冲传感器内带电粒子电渗力的定量估计
- DOI:
10.1109/embc.2016.7591660 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Mostafa Ghobadi;Yuqian Zhang;Ankit Rana;E. Esfahani;Leyla Esfandiari - 通讯作者:
Leyla Esfandiari
Simultaneous detection of multiple charged particles using a borosilicate nanopore-based sensor
使用基于硼硅酸盐纳米孔的传感器同时检测多个带电粒子
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Yuqian Zhang;Leyla Esfandiari - 通讯作者:
Leyla Esfandiari
Amplification-Free Detection of Micrornas Related to Clear Cell Renal Cell Carcinoma Utilizing a Novel Nanopore-Based Sensor
- DOI:
10.1016/j.bpj.2017.11.3705 - 发表时间:
2018-02-02 - 期刊:
- 影响因子:
- 作者:
Yuqian Zhang;Ankit Rana;Maria F. Czyzyk-Krzesk;Leyla Esfandiari - 通讯作者:
Leyla Esfandiari
Alteration of membrane potential of head and neck cancer cells using a piezoelectric nanofiber interface
- DOI:
10.1016/j.bpj.2022.11.2339 - 发表时间:
2023-02-10 - 期刊:
- 影响因子:
- 作者:
Maulee Sheth;Maksym Krutko;Maria Lehn;Vinita Takiar;Trisha Wise-Draper;Leyla Esfandiari - 通讯作者:
Leyla Esfandiari
Biophysical Characterization of Exosomes Based on their Unique Dielectric Properties
- DOI:
10.1016/j.bpj.2019.11.1071 - 发表时间:
2020-02-07 - 期刊:
- 影响因子:
- 作者:
Yuqian Zhang;Leilei Shi;Leyla Esfandiari - 通讯作者:
Leyla Esfandiari
Leyla Esfandiari的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leyla Esfandiari', 18)}}的其他基金
EAGER:A Novel Lab-on-a-Chip Concept for Characterization of Nanovesicles based on their Dielectric Properties
EAGER:基于介电特性表征纳米囊泡的新型芯片实验室概念
- 批准号:
2020112 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似海外基金
"Electrokinetically mediated technologies for liquid, waste, soil and emission treatment in extreme climate conditions"
“极端气候条件下用于液体、废物、土壤和排放处理的电动介导技术”
- 批准号:
156161-2012 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
"Electrokinetically mediated technologies for liquid, waste, soil and emission treatment in extreme climate conditions"
“极端气候条件下用于液体、废物、土壤和排放处理的电动介导技术”
- 批准号:
156161-2012 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
"Electrokinetically mediated technologies for liquid, waste, soil and emission treatment in extreme climate conditions"
“极端气候条件下用于液体、废物、土壤和排放处理的电动介导技术”
- 批准号:
156161-2012 - 财政年份:2014
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
"Electrokinetically mediated technologies for liquid, waste, soil and emission treatment in extreme climate conditions"
“极端气候条件下用于液体、废物、土壤和排放处理的电动介导技术”
- 批准号:
156161-2012 - 财政年份:2013
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
Electrokinetically enhanced membrane bioreactors
电动增强膜生物反应器
- 批准号:
431760-2012 - 财政年份:2012
- 资助金额:
$ 50万 - 项目类别:
University Undergraduate Student Research Awards
"Electrokinetically mediated technologies for liquid, waste, soil and emission treatment in extreme climate conditions"
“极端气候条件下用于液体、废物、土壤和排放处理的电动介导技术”
- 批准号:
156161-2012 - 财政年份:2012
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
EAPSI: Electrokinetically Aided Dechlorination of Polychlorinated Biphenyls by Mg/Pd Bimetal
EAPSI:Mg/Pd 双金属电动辅助多氯联苯脱氯
- 批准号:
1015554 - 财政年份:2010
- 资助金额:
$ 50万 - 项目类别:
Fellowship Award
US-Israel DDEP: Asymptotic Methods at Nano/Microfluidic Interfaces in Electrokinetically Driven Systems
美国-以色列 DDEP:电动驱动系统中纳米/微流体界面的渐近方法
- 批准号:
0936670 - 财政年份:2009
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Development of a Molecule-based Diagnostic Technique to Study Joule Heating and Micro-scale Heat Transfer Process in Electrokinetically-driven Microfluidics
职业:开发基于分子的诊断技术来研究电动驱动微流体中的焦耳热和微尺度传热过程
- 批准号:
0545918 - 财政年份:2006
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Mechanism-Based Analysis for Electrokinetically-Enhanced Aggregate Remediation
基于机理的电动增强聚集体修复分析
- 批准号:
9901108 - 财政年份:1999
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant