CAREER: Embedding High-Order Interaction Events: Models, Algorithms, and Applications
职业:嵌入高阶交互事件:模型、算法和应用
基本信息
- 批准号:2046295
- 负责人:
- 金额:$ 54.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
High-order interaction events of multiple entities are ubiquitous, ranging from online advertising to commodity recommendation, from neural-signal transduction to gene regulation to disease spreading to international affairs. For example, online shopping behaviors are interaction events between customers, products and selling platforms. This project develops flexible, interpretable, and scalable Bayesian embeddings for massive high-order interaction events, in order to understand a variety of complex relationships between the events and discover the underlying rich patterns. The developed tools can fundamentally promote many important knowledge mining and prediction tasks. Examples include predicting the occurrence of hazardous online transactions to enhance financial security, predicting the outbreak and spreading of pandemic diseases to take effective preventive actions, early warnings of catastrophes, studying when and how rumors propagate through online social media, etc. Current approaches for event data analysis are mostly restricted to binary interactions, and suffer from rough, over-simplified or opaque, uninterpretable modeling with limited computational efficiency. The goal of the project is to develop Bayesian embeddings that can efficiently process tremendous batch and fast streaming event data, capture both the static relationships of the entities and a variety of short-term, long-term, triggering, inhibition, and time varying influences among the events, and encode all of these into embedding representations to uncover rich temporal patterns. The research will be accomplished through four primary tasks: (1) using marked point processes to design highly expressive yet transparent Bayesian embedding models, (2) using variational transforms and composite Monte-Carlo approximations to fulfill stochastic mini-batch gradient and asynchronous stochastic learning on extremely large-scale batch data, (3) efficient posterior incremental learning for rapid event streams, and (4) comprehensive evaluations on synthetic and real-world applications. Moreover, using Bayesian frameworks, the developed tools are resilient to noises, provide posterior distributions to quantify uncertainties, and integrate all possible outcomes into robust predictions. The contribution is expected to dramatically promote the use of embedding as a means of temporal knowledge mining and predictive analytics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
从网络广告到商品推荐,从神经信号传导到基因调控,从疾病传播到国际事务,多个实体的高阶交互事件无处不在。例如,网络购物行为是客户、产品和销售平台之间的交互事件。该项目为大量高阶交互事件开发灵活,可解释和可扩展的贝叶斯嵌入,以了解事件之间的各种复杂关系并发现潜在的丰富模式。所开发的工具可以从根本上促进许多重要的知识挖掘和预测任务。例如,预测危险在线交易的发生以增强金融安全,预测流行性疾病的爆发和传播以采取有效的预防措施,对灾难进行早期预警,研究谣言何时以及如何通过在线社交媒体传播等。不可解释的建模,计算效率有限。该项目的目标是开发贝叶斯嵌入,可以有效地处理大量的批量和快速流事件数据,捕获实体的静态关系以及事件之间的各种短期,长期,触发,抑制和随时间变化的影响,并将所有这些编码为嵌入表示,以揭示丰富的时间模式。这项研究将通过四项主要任务来完成:(1)使用标记点过程设计高表达性且透明的贝叶斯嵌入模型,(2)使用变分变换和复合蒙特-卡罗近似实现随机小批量梯度和超大规模批量数据的异步随机学习,(3)快速事件流的有效后验增量学习,(4)综合评价合成和实际应用。此外,使用贝叶斯框架,所开发的工具是弹性的噪声,提供后验分布量化的不确定性,并集成到强大的预测所有可能的结果。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nonparametric Embeddings of Sparse High-Order Interaction Events
- DOI:10.48550/arxiv.2207.03639
- 发表时间:2022-07
- 期刊:
- 影响因子:0
- 作者:Z. Wang;Yiming Xu;Conor Tillinghast;Shibo Li;A. Narayan;Shandian Zhe
- 通讯作者:Z. Wang;Yiming Xu;Conor Tillinghast;Shibo Li;A. Narayan;Shandian Zhe
Functional Bayesian Tucker Decomposition for Continuous-indexed Tensor
连续索引张量的函数贝叶斯塔克分解
- DOI:
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Fang, Shikai;Yu, Xin;Wang, Zheng;Li, Shibo;Kirby, Robert M.;Zhe, Shandian
- 通讯作者:Zhe, Shandian
Equation Discovery with Bayesian Spike-and-Slab Priors and Efficient Kernels
- DOI:10.48550/arxiv.2310.05387
- 发表时间:2023-10
- 期刊:
- 影响因子:0
- 作者:Da Long;Wei W. Xing;Aditi S. Krishnapriyan;R. Kirby;Shandian Zhe;Michael W. Mahoney
- 通讯作者:Da Long;Wei W. Xing;Aditi S. Krishnapriyan;R. Kirby;Shandian Zhe;Michael W. Mahoney
Decomposing Temporal High-Order Interactions via Latent ODEs
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Shibo Li;Robert M. Kirby;Shandian Zhe
- 通讯作者:Shibo Li;Robert M. Kirby;Shandian Zhe
Self-Adaptable Point Processes with Nonparametric Time Decays
具有非参数时间衰减的自适应点过程
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Pan, Zhimeng;Wang, Zheng;Phillips, Jeff;Zhe, Shandian
- 通讯作者:Zhe, Shandian
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shandian Zhe其他文献
FINE-SCALE LAND ALLOCATION TOOL FOR GLOBAL LAND USE ANALYSIS
用于全球土地利用分析的精细土地分配工具
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Jingyu Song;Michael S. Delgado;P. Preckel;Shandian Zhe;Ian Campbell;Lan Zhao;Carol X. Song - 通讯作者:
Carol X. Song
Inherently interpretable machine learning solutions to differential equations
本质上可解释的微分方程的机器学习解决方案
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:1.6
- 作者:
Hongsup Oh;R. Amici;Geoffrey Bomarito;Shandian Zhe;R. Kirby;Jacob Hochhalter - 通讯作者:
Jacob Hochhalter
Scalable Nonparametric Tensor Analysis
- DOI:
10.1609/aaai.v31i1.10522 - 发表时间:
2017-02 - 期刊:
- 影响因子:0
- 作者:
Shandian Zhe - 通讯作者:
Shandian Zhe
Infinite-Fidelity Coregionalization for Physical Simulation
物理模拟的无限保真度共区域化
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Shibo Li;Z. Wang;Robert M. Kirby;Shandian Zhe - 通讯作者:
Shandian Zhe
Regularized Variational Sparse Gaussian Processes
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Shandian Zhe - 通讯作者:
Shandian Zhe
Shandian Zhe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shandian Zhe', 18)}}的其他基金
III: Small: Collaborative Research: Scalable Deep Bayesian Tensor Decomposition
III:小:协作研究:可扩展的深贝叶斯张量分解
- 批准号:
1910983 - 财政年份:2019
- 资助金额:
$ 54.93万 - 项目类别:
Standard Grant
相似海外基金
Job share: Embedding environmental and geospatial science in nature recovery and rewilding
工作分享:将环境和地理空间科学融入自然恢复和野化中
- 批准号:
NE/Y005163/1 - 财政年份:2024
- 资助金额:
$ 54.93万 - 项目类别:
Research Grant
Spectral embedding methods and subsequent inference tasks on dynamic multiplex graphs
动态多路复用图上的谱嵌入方法和后续推理任务
- 批准号:
EP/Y002113/1 - 财政年份:2024
- 资助金额:
$ 54.93万 - 项目类别:
Research Grant
Collaborative Research: Embedding Material-Informed History through Fractional Calculus State Variable Formulation
合作研究:通过分数阶微积分状态变量公式嵌入材料丰富的历史
- 批准号:
2345437 - 财政年份:2024
- 资助金额:
$ 54.93万 - 项目类别:
Standard Grant
CRII: SHF: Embedding techniques for mechanized reasoning about existing programs
CRII:SHF:现有程序机械化推理的嵌入技术
- 批准号:
2348490 - 财政年份:2024
- 资助金额:
$ 54.93万 - 项目类别:
Standard Grant
Job Share: Embedding environmental and geospatial science in nature recovery and rewilding
工作分享:将环境和地理空间科学融入自然恢复和野化中
- 批准号:
NE/Y005155/1 - 财政年份:2024
- 资助金额:
$ 54.93万 - 项目类别:
Research Grant
Collaborative Research: Embedding Material-Informed History through Fractional Calculus State Variable Formulation
合作研究:通过分数阶微积分状态变量公式嵌入材料丰富的历史
- 批准号:
2345438 - 财政年份:2024
- 资助金额:
$ 54.93万 - 项目类别:
Standard Grant
Creative Health Boards: A New Model for Embedding Creative Health and Community Assets in Health Systems across the UK
创意健康委员会:将创意健康和社区资产融入英国卫生系统的新模式
- 批准号:
AH/Z505377/1 - 财政年份:2024
- 资助金额:
$ 54.93万 - 项目类别:
Research Grant
SBIR Phase I: Methods for Embedding User Data into 3D Generative AI Computer-aided-Design Models
SBIR 第一阶段:将用户数据嵌入 3D 生成式 AI 计算机辅助设计模型的方法
- 批准号:
2335491 - 财政年份:2024
- 资助金额:
$ 54.93万 - 项目类别:
Standard Grant
DEFRA Embedding Economics into the Fourth UK Climate Change Risk Assessment
DEFRA 将经济学纳入第四次英国气候变化风险评估
- 批准号:
ES/Y005236/1 - 财政年份:2024
- 资助金额:
$ 54.93万 - 项目类别:
Fellowship
Towards Embedding Responsible AI in the School System: Co-Creation with Young People
将负责任的人工智能嵌入学校系统:与年轻人共同创造
- 批准号:
AH/Z505560/1 - 财政年份:2024
- 资助金额:
$ 54.93万 - 项目类别:
Research Grant