CAREER: Facilitating Autonomy of Robots Through Learning-Based Control

职业:通过基于学习的控制促进机器人的自主性

基本信息

  • 批准号:
    2046481
  • 负责人:
  • 金额:
    $ 57.11万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-04-30
  • 项目状态:
    已结题

项目摘要

Drone techniques have achieved significant progress in the past decades. However, it is still very challenging to massively bring heterogeneous drones by many different manufacturers to real-world applications. One main reason is that, whenever a new drone is built, the planning and control algorithms for the drone usually have to be designed very carefully and the actions for the drone to take usually have to be laboriously programmed with considerable tuning effort. To remove, if not lessen, such limitations, this Faculty Early Career Development (CAREER) project establishes a novel learning-based framework that equips drones with new capabilities of "learning from the experience" of other drones despite their different dynamics and platforms. This approach to design of planning and control of drones will significantly reduce the design, test, evaluation and certification of drones, uniquely and efficiently customized for applications in their operating environment. The integrated research-and-education activities will provide students in the Western New York area with hands-on experience and internship opportunities on drone techniques, toward better preparing the future workforce for the unmanned aerial system industry in the United States.This project will establish a novel learning-based feedforward control framework and equip drones with new capabilities for learning three particular skills, i.e., (1) how to generate a dynamically feasible trajectory, (2) how to sense and compensate external disturbances, and (3) how to learn from others' learned experience, called "dynamic learning." These three skills are crucial for drones to perform complex tasks, and the foundation for understanding of how one robot could efficiently learn from the experiences gathered by other robots with different dynamics. Key to this approach is an architecture that automatically adjusts the original outputs of the baseline planners and controllers by adding feedforward learning signals to improve drone's flight performance. This learning framework is neither to completely replace the existing planning and control methods nor to compete for the highest optimized performance possible but rather to provide an elegant learning mechanism that is highly adaptable and reasonably efficient involving minimal hardware modification and software reconfiguration for commodity drones.This project is supported by the cross-directorate Foundational Research in Robotics program, jointly managed and funded by the Directorates for Engineering (ENG) and Computer and Information Science and Engineering (CISE).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
无人机技术在过去几十年中取得了重大进展。然而,将许多不同制造商的异构无人机大规模应用于现实世界仍然非常具有挑战性。一个主要原因是,每当建造新的无人机时,用于无人机的规划和控制算法通常必须非常仔细地设计,并且无人机要采取的动作通常必须通过相当大的调整努力来费力地编程。为了消除(如果不是减少的话)这些限制,这个教师早期职业发展(CAREER)项目建立了一个新的基于学习的框架,为无人机配备了“从其他无人机的经验中学习”的新能力,尽管它们的动力学和平台不同。这种无人机规划和控制的设计方法将大大减少无人机的设计,测试,评估和认证,独特而有效地定制其操作环境中的应用。综合研究和教育活动将为西纽约地区的学生提供无人机技术的实践经验和实习机会,为美国无人机系统行业的未来劳动力做好更好的准备。该项目将建立一个新颖的基于学习的前馈控制框架,并为无人机提供学习三种特定技能的新能力,即,(1)如何生成动态可行的轨迹,(2)如何感知和补偿外部干扰,以及(3)如何从他人的学习经验中学习,称为“动态学习”。“这三项技能对于无人机执行复杂任务至关重要,也是理解一个机器人如何有效地从其他具有不同动力学的机器人收集的经验中学习的基础。这种方法的关键是一种架构,通过添加前馈学习信号来自动调整基线规划器和控制器的原始输出,以提高无人机的飞行性能。这种学习框架既不是要完全取代现有的规划和控制方法,也不是要竞争尽可能最高的优化性能,而是要提供一种优雅的学习机制,具有高度的适应性和合理的效率,涉及最小的硬件修改和软件重新配置的商品无人机。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A New Iterative Learning Control Algorithm for Final Error Reduction*
  • DOI:
    10.1016/j.ifacol.2022.11.278
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhu Chen;Xiao Liang;Minghui Zheng
  • 通讯作者:
    Zhu Chen;Xiao Liang;Minghui Zheng
An audio‐based risky flight detection framework for quadrotors
  • DOI:
    10.1049/csy2.12105
  • 发表时间:
    2024-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wansong Liu;Chang Liu;S. Sajedi;Hao Su;Xiao Liang;Minghui Zheng
  • 通讯作者:
    Wansong Liu;Chang Liu;S. Sajedi;Hao Su;Xiao Liang;Minghui Zheng
A hybrid disturbance observer for delivery drone’s oscillation suppression
  • DOI:
    10.1016/j.mechatronics.2022.102907
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Zhu Chen;Chang Liu;H. Su;Xiao Liang;Minghui Zheng
  • 通讯作者:
    Zhu Chen;Chang Liu;H. Su;Xiao Liang;Minghui Zheng
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Minghui Zheng其他文献

Synergetic promoting/inhibiting mechanisms of copper/calcium compounds in the formation of persistent organic pollutants and environmentally persistent free radicals from anthracene
铜/钙化合物对蒽形成持久性有机污染物和环境持久性自由基的协同促进/抑制机制
  • DOI:
    10.1016/j.cej.2022.136102
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    15.1
  • 作者:
    Bingcheng Lin;Lili Yang;Minghui Zheng;Linjun Qin;Shuting Liu;Yuxiang Sun;Changzhi Chen;Guorui Liu
  • 通讯作者:
    Guorui Liu
Iterative Learning for Heterogeneous Systems
异构系统的迭代学习
Sources of unintentionally produced polychlorinated naphthalenes
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    8.8
  • 作者:
    Guorui Liu;Zongwei Cai;Minghui Zheng;
  • 通讯作者:
Free radical mechanism of toxic organic compound formations from emo/em-chlorophenol
从 emo/em-氯酚形成有毒有机化合物的自由基机制
  • DOI:
    10.1016/j.jhazmat.2022.130367
  • 发表时间:
    2023-02-05
  • 期刊:
  • 影响因子:
    11.300
  • 作者:
    Xiaoyun Liu;Guorui Liu;Shuting Liu;Linjun Qin;Bingcheng Lin;Mingxuan Wang;Lili Yang;Minghui Zheng
  • 通讯作者:
    Minghui Zheng
Intelligent Autonomous Navigation of Car-Like Unmanned Ground Vehicle via Deep Reinforcement Learning
基于深度强化学习的类车无人地面车辆智能自主导航
  • DOI:
    10.1016/j.ifacol.2021.11.178
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shathushan Sivashangaran;Minghui Zheng
  • 通讯作者:
    Minghui Zheng

Minghui Zheng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Minghui Zheng', 18)}}的其他基金

CAREER: Facilitating Autonomy of Robots Through Learning-Based Control
职业:通过基于学习的控制促进机器人的自主性
  • 批准号:
    2422698
  • 财政年份:
    2024
  • 资助金额:
    $ 57.11万
  • 项目类别:
    Continuing Grant
Collaborative Research: Road Information Discovery through Privacy-Preserved Collaborative Estimation in Connected Vehicles
协作研究:通过联网车辆中保护隐私的协作估计来发现道路信息
  • 批准号:
    2422579
  • 财政年份:
    2024
  • 资助金额:
    $ 57.11万
  • 项目类别:
    Standard Grant
NRI/Collaborative Research: Robotic Disassembly of High-Precision Electronic Devices
NRI/合作研究:高精度电子设备的机器人拆卸
  • 批准号:
    2422640
  • 财政年份:
    2024
  • 资助金额:
    $ 57.11万
  • 项目类别:
    Standard Grant
NRI/Collaborative Research: Robotic Disassembly of High-Precision Electronic Devices
NRI/合作研究:高精度电子设备的机器人拆卸
  • 批准号:
    2132923
  • 财政年份:
    2022
  • 资助金额:
    $ 57.11万
  • 项目类别:
    Standard Grant
Collaborative Research: Road Information Discovery through Privacy-Preserved Collaborative Estimation in Connected Vehicles
协作研究:通过联网车辆中保护隐私的协作估计来发现道路信息
  • 批准号:
    2030375
  • 财政年份:
    2020
  • 资助金额:
    $ 57.11万
  • 项目类别:
    Standard Grant
FW-HTF-RL: Collaborative Research: The Future of Remanufacturing: Human-Robot Collaboration for Disassembly of End-of-Use Products
FW-HTF-RL:协作研究:再制造的未来:人机协作拆卸最终产品
  • 批准号:
    2026533
  • 财政年份:
    2020
  • 资助金额:
    $ 57.11万
  • 项目类别:
    Standard Grant
FW-HTF-P: Human-Robot Collaboration in Disassembly for Future Remanufacturing
FW-HTF-P:人机协作拆卸以实现未来再制造
  • 批准号:
    1928595
  • 财政年份:
    2019
  • 资助金额:
    $ 57.11万
  • 项目类别:
    Standard Grant

相似海外基金

Facilitating circular construction practices in the UK: A data driven online marketplace for waste building materials
促进英国的循环建筑实践:数据驱动的废弃建筑材料在线市场
  • 批准号:
    10113920
  • 财政年份:
    2024
  • 资助金额:
    $ 57.11万
  • 项目类别:
    SME Support
NSF Postdoctoral Fellowship in Biology: Investigating the role of thermal stress response in facilitating adaptation in camel spiders
美国国家科学基金会生物学博士后奖学金:研究热应激反应在促进骆驼蜘蛛适应中的作用
  • 批准号:
    2305969
  • 财政年份:
    2024
  • 资助金额:
    $ 57.11万
  • 项目类别:
    Fellowship Award
CAREER: Facilitating Autonomy of Robots Through Learning-Based Control
职业:通过基于学习的控制促进机器人的自主性
  • 批准号:
    2422698
  • 财政年份:
    2024
  • 资助金额:
    $ 57.11万
  • 项目类别:
    Continuing Grant
Quantifying the effect of sediment microbial activity in facilitating silica sequestration during early diagenesis (QUALIFIED)
量化早期成岩过程中沉积物微生物活性对促进二氧化硅固存的影响(合格)
  • 批准号:
    2319429
  • 财政年份:
    2024
  • 资助金额:
    $ 57.11万
  • 项目类别:
    Standard Grant
Constraints on the tempo and magnitude of explosive volcanism: facilitating long-term ash fall hazard assessments
对爆发性火山活动的速度和强度的限制:促进长期火山灰坠落危险评估
  • 批准号:
    MR/Y011767/1
  • 财政年份:
    2024
  • 资助金额:
    $ 57.11万
  • 项目类别:
    Fellowship
Collaborative Research: GEO OSE Track 1: Facilitating Reproducible Open GeoScience
合作研究:GEO OSE 第 1 轨道:促进可重复的开放地球科学
  • 批准号:
    2324732
  • 财政年份:
    2024
  • 资助金额:
    $ 57.11万
  • 项目类别:
    Standard Grant
Solar E-Waste in Africa: facilitating the right to repair
非洲的太阳能电子废物:促进修复权
  • 批准号:
    LP230100220
  • 财政年份:
    2024
  • 资助金额:
    $ 57.11万
  • 项目类别:
    Linkage Projects
Deciphering the mechanisms facilitating rapid uterine invasion of implanting human embryos
破译促进植入人类胚胎快速侵入子宫的机制
  • 批准号:
    BB/Y005120/1
  • 财政年份:
    2024
  • 资助金额:
    $ 57.11万
  • 项目类别:
    Research Grant
ART: Facilitating Impactful New Entrepreneurs to Accelerate Research Translation (FINE ART)
ART:促进有影响力的新企业家加速研究转化(FINE ART)
  • 批准号:
    2331351
  • 财政年份:
    2024
  • 资助金额:
    $ 57.11万
  • 项目类别:
    Cooperative Agreement
Collaborative Research: GEO OSE Track 1: Facilitating Reproducible Open GeoScience
合作研究:GEO OSE 第 1 轨道:促进可重复的开放地球科学
  • 批准号:
    2324733
  • 财政年份:
    2024
  • 资助金额:
    $ 57.11万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了