FW-HTF-RL: Collaborative Research: The Future of Remanufacturing: Human-Robot Collaboration for Disassembly of End-of-Use Products
FW-HTF-RL:协作研究:再制造的未来:人机协作拆卸最终产品
基本信息
- 批准号:2026533
- 负责人:
- 金额:$ 148.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This Future of Work at the Human Technology Frontier (FW-HTF) project will advance effective human-robot collaboration (HRC) to reduce electronics remanufacturing costs and improve operator safety, while considering the highly complex unstructured nature of the remanufacturing environment. Scarcity of resources, environmental regulations, and potential profits from salvaging valuable materials and components have motivated consideration of end-of-use product recovery and remanufacturing. However there are significant challenges related to the labor-intensive nature of disassembly, which is an integral part of critical remanufacturing operations such as reuse, repair, maintenance, and recycling. This project focuses on robot-assisted disassembly to increase productivity, while enhancing job satisfaction and ensuring worker safety. Today, disassembly is still a predominantly labor-intensive process that requires direct contact with many elements that are potentially harmful to human health. The research will advance fundamental understanding of the way humans and robots distribute tasks, cooperate, and interact in a safe and complementary manner. Among the expected benefits of the research results are improved quality of life for remanufacturing workers, increased recycling and reduced waste for used electronic materials, the creation of new manufacturing jobs, reduced dependency on foreign sources of strategic materials, and increased stocks of domestically harvested rare earth elements. The multidisciplinary research crosses the boundaries between robotics, sustainable design, human factors, data science, and labor economics, by the joint efforts between the University at Buffalo (UB) and the University of Florida (UF). The research will positively impact engineering education and workforce development through educational and outreach activities such as workshops for K12 students, course development at both institutions, timely training of graduate students, and a set of workshops for industry and academic audiences. The project is focused on advancing an integrated framework that utilizes the capabilities of both humans and robots in a safe, complementary, and interactive manner, towards designing an economically viable disassembly system for the remanufacturing industry. The research team will perform fundamental studies on collaborative disassembly systems by implementing five interdependent research tasks within the contexts of Future Technology, Future Worker, and Future Work: (1) work environment monitoring with human motion prediction, (2) planning, learning, and control for collaborative robots, (3) disassembly sequence planning under uncertainty and exploring HRC-inspired design guidelines, (4) human-robotics system integration, and (5) modeling and prediction of economic impacts of HRC in remanufacturing environments. Specific knowledge gaps are addressed by mutual interactions among product design guidelines, HRC, occupational safety standards, and remanufacturing labor market. The convergent research approach will allow iteratively adjusted and enhanced collaborative disassembly systems to be implemented in future remanufacturing factories.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人类技术前沿(FW-HTF)项目的未来工作将推进有效的人机协作(HRC),以降低电子产品再制造成本并提高操作员的安全性,同时考虑到再制造环境高度复杂的非结构化性质。资源的稀缺性、环境法规以及回收有价值的材料和部件的潜在利润促使人们考虑使用后产品的回收和再制造。然而,与拆卸的劳动密集型性质相关的重大挑战是,拆卸是关键再制造操作(如再利用、维修、维护和再循环)的组成部分。该项目侧重于机器人辅助拆卸,以提高生产率,同时提高工作满意度和确保工人安全。今天,拆卸仍然是一个主要的劳动密集型过程,需要直接接触许多可能对人体健康有害的元素。这项研究将促进对人类和机器人以安全和互补的方式分配任务、合作和互动方式的基本理解。研究成果的预期效益包括提高再制造工人的生活质量,增加废旧电子材料的回收和减少浪费,创造新的制造业就业机会,减少对国外战略材料来源的依赖,以及增加国内收获的稀土元素库存。在布法罗大学(UB)和佛罗里达大学(UF)的共同努力下,多学科研究跨越了机器人、可持续设计、人为因素、数据科学和劳动经济学之间的界限。这项研究将通过教育和推广活动对工程教育和劳动力发展产生积极影响,这些活动包括为K12学生举办的研讨会、两所大学的课程开发、对研究生的及时培训以及为工业界和学术界举办的一系列研讨会。该项目的重点是推进一个综合框架,以安全、互补和互动的方式利用人类和机器人的能力,为再制造行业设计一个经济可行的拆卸系统。研究小组将在未来技术、未来工人和未来工作的背景下,通过实施五个相互依存的研究任务,对协同拆卸系统进行基础研究:(1)基于人体运动预测的工作环境监测;(2)协作机器人的规划、学习和控制;(3)不确定性下的拆卸顺序规划和探索HRC启发的设计准则;(4)人机系统集成;(5)再制造环境中HRC的经济影响建模和预测。具体的知识差距通过产品设计指南、HRC、职业安全标准和再制造劳动力市场之间的相互作用来解决。融合研究方法将允许在未来的再制造工厂中实施迭代调整和增强的协同拆卸系统。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Deep-ConvLSTM Collision Prediction Model for Manipulators in Dynamic Environment
- DOI:10.1016/j.ifacol.2022.10.490
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Chang Liu;Wansong Liu;Zhu Chen;Minghui Zheng
- 通讯作者:Chang Liu;Wansong Liu;Zhu Chen;Minghui Zheng
Dynamic Model Informed Human Motion Prediction Based on Unscented Kalman Filter
- DOI:10.1109/tmech.2022.3173167
- 发表时间:2022-12
- 期刊:
- 影响因子:0
- 作者:Wansong Liu;Xiao Liang;Minghui Zheng
- 通讯作者:Wansong Liu;Xiao Liang;Minghui Zheng
A Review of Prospects and Opportunities in Disassembly With Human–Robot Collaboration
人机协作拆卸的前景和机遇回顾
- DOI:10.1115/1.4063992
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Lee, Meng-Lun;Liang, Xiao;Hu, Boyi;Onel, Gulcan;Behdad, Sara;Zheng, Minghui
- 通讯作者:Zheng, Minghui
Optimization-Based Disassembly Sequence Planning Under Uncertainty for Human–Robot Collaboration
不确定性下基于优化的人机协作拆卸顺序规划
- DOI:10.1115/1.4055901
- 发表时间:2023
- 期刊:
- 影响因子:3.3
- 作者:Liao, Hao-yu;Chen, Yuhao;Hu, Boyi;Behdad, Sara
- 通讯作者:Behdad, Sara
Robot-Assisted Disassembly Sequence Planning With Real-Time Human Motion Prediction
- DOI:10.1109/tsmc.2022.3185889
- 发表时间:2023-01
- 期刊:
- 影响因子:0
- 作者:Meng-Lun Lee;Wansong Liu;S. Behdad;Xiao Liang;Minghui Zheng
- 通讯作者:Meng-Lun Lee;Wansong Liu;S. Behdad;Xiao Liang;Minghui Zheng
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Minghui Zheng其他文献
Synergetic promoting/inhibiting mechanisms of copper/calcium compounds in the formation of persistent organic pollutants and environmentally persistent free radicals from anthracene
铜/钙化合物对蒽形成持久性有机污染物和环境持久性自由基的协同促进/抑制机制
- DOI:
10.1016/j.cej.2022.136102 - 发表时间:
2022 - 期刊:
- 影响因子:15.1
- 作者:
Bingcheng Lin;Lili Yang;Minghui Zheng;Linjun Qin;Shuting Liu;Yuxiang Sun;Changzhi Chen;Guorui Liu - 通讯作者:
Guorui Liu
Iterative Learning for Heterogeneous Systems
异构系统的迭代学习
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Zhu Chen;Xiao Liang;Minghui Zheng - 通讯作者:
Minghui Zheng
Sources of unintentionally produced polychlorinated naphthalenes
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:8.8
- 作者:
Guorui Liu;Zongwei Cai;Minghui Zheng; - 通讯作者:
Free radical mechanism of toxic organic compound formations from emo/em-chlorophenol
从 emo/em-氯酚形成有毒有机化合物的自由基机制
- DOI:
10.1016/j.jhazmat.2022.130367 - 发表时间:
2023-02-05 - 期刊:
- 影响因子:11.300
- 作者:
Xiaoyun Liu;Guorui Liu;Shuting Liu;Linjun Qin;Bingcheng Lin;Mingxuan Wang;Lili Yang;Minghui Zheng - 通讯作者:
Minghui Zheng
Intelligent Autonomous Navigation of Car-Like Unmanned Ground Vehicle via Deep Reinforcement Learning
基于深度强化学习的类车无人地面车辆智能自主导航
- DOI:
10.1016/j.ifacol.2021.11.178 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Shathushan Sivashangaran;Minghui Zheng - 通讯作者:
Minghui Zheng
Minghui Zheng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Minghui Zheng', 18)}}的其他基金
CAREER: Facilitating Autonomy of Robots Through Learning-Based Control
职业:通过基于学习的控制促进机器人的自主性
- 批准号:
2422698 - 财政年份:2024
- 资助金额:
$ 148.58万 - 项目类别:
Continuing Grant
Collaborative Research: Road Information Discovery through Privacy-Preserved Collaborative Estimation in Connected Vehicles
协作研究:通过联网车辆中保护隐私的协作估计来发现道路信息
- 批准号:
2422579 - 财政年份:2024
- 资助金额:
$ 148.58万 - 项目类别:
Standard Grant
NRI/Collaborative Research: Robotic Disassembly of High-Precision Electronic Devices
NRI/合作研究:高精度电子设备的机器人拆卸
- 批准号:
2422640 - 财政年份:2024
- 资助金额:
$ 148.58万 - 项目类别:
Standard Grant
NRI/Collaborative Research: Robotic Disassembly of High-Precision Electronic Devices
NRI/合作研究:高精度电子设备的机器人拆卸
- 批准号:
2132923 - 财政年份:2022
- 资助金额:
$ 148.58万 - 项目类别:
Standard Grant
CAREER: Facilitating Autonomy of Robots Through Learning-Based Control
职业:通过基于学习的控制促进机器人的自主性
- 批准号:
2046481 - 财政年份:2021
- 资助金额:
$ 148.58万 - 项目类别:
Continuing Grant
Collaborative Research: Road Information Discovery through Privacy-Preserved Collaborative Estimation in Connected Vehicles
协作研究:通过联网车辆中保护隐私的协作估计来发现道路信息
- 批准号:
2030375 - 财政年份:2020
- 资助金额:
$ 148.58万 - 项目类别:
Standard Grant
FW-HTF-P: Human-Robot Collaboration in Disassembly for Future Remanufacturing
FW-HTF-P:人机协作拆卸以实现未来再制造
- 批准号:
1928595 - 财政年份:2019
- 资助金额:
$ 148.58万 - 项目类别:
Standard Grant
相似国自然基金
转HTFα对脊髓继发性损伤和微循环重建的影响
- 批准号:39970755
- 批准年份:1999
- 资助金额:13.0 万元
- 项目类别:面上项目
相似海外基金
FW-HTF-RL: Success via a Human-Assistive Wearable Technology Partnership Fostering Neurodiverse Individuals' Work Success via an Assistive Wearable Technology
FW-HTF-RL:通过人类辅助可穿戴技术合作伙伴关系取得成功通过辅助可穿戴技术促进神经多样性个体的工作成功
- 批准号:
2326270 - 财政年份:2024
- 资助金额:
$ 148.58万 - 项目类别:
Standard Grant
Collaborative Research [FW-HTF-RL]: Enhancing the Future of Teacher Practice via AI-enabled Formative Feedback for Job-Embedded Learning
协作研究 [FW-HTF-RL]:通过人工智能支持的工作嵌入学习形成性反馈增强教师实践的未来
- 批准号:
2326170 - 财政年份:2023
- 资助金额:
$ 148.58万 - 项目类别:
Standard Grant
Collaborative Research: FW-HTF-RL: Trapeze: Responsible AI-assisted Talent Acquisition for HR Specialists
合作研究:FW-HTF-RL:Trapeze:负责任的人工智能辅助人力资源专家人才获取
- 批准号:
2326193 - 财政年份:2023
- 资助金额:
$ 148.58万 - 项目类别:
Standard Grant
FW-HTF-RL/Collaborative Research: Future of Digital Facility Management (Future of DFM)
FW-HTF-RL/协作研究:数字设施管理的未来(DFM 的未来)
- 批准号:
2326407 - 财政年份:2023
- 资助金额:
$ 148.58万 - 项目类别:
Standard Grant
FW-HTF-RL/Collaborative Research: Future of Digital Facility Management (Future of DFM)
FW-HTF-RL/协作研究:数字设施管理的未来(DFM 的未来)
- 批准号:
2326408 - 财政年份:2023
- 资助金额:
$ 148.58万 - 项目类别:
Standard Grant
Collaborative Research: FW-HTF-RL: Understanding the Ethics, Development, Design, and Integration of Interactive Artificial Intelligence Teammates in Future Mental Health Work
合作研究:FW-HTF-RL:了解未来心理健康工作中交互式人工智能队友的伦理、开发、设计和整合
- 批准号:
2326146 - 财政年份:2023
- 资助金额:
$ 148.58万 - 项目类别:
Standard Grant
Collaborative Research [FW-HTF-RL]: Enhancing the Future of Teacher Practice via AI-enabled Formative Feedback for Job-Embedded Learning
协作研究 [FW-HTF-RL]:通过人工智能支持的工作嵌入学习形成性反馈增强教师实践的未来
- 批准号:
2326169 - 财政年份:2023
- 资助金额:
$ 148.58万 - 项目类别:
Standard Grant
FW-HTF-RL/Collaborative Research: The Future of Aviation Inspection: Artificial Intelligence and Mixed Reality as Agents of Transformation
FW-HTF-RL/合作研究:航空检查的未来:人工智能和混合现实作为转型的推动者
- 批准号:
2326186 - 财政年份:2023
- 资助金额:
$ 148.58万 - 项目类别:
Standard Grant
FW-HTF-RL/Collaborative Research: The Future of Aviation Inspection: Artificial Intelligence and Mixed Reality as Agents of Transformation
FW-HTF-RL/合作研究:航空检查的未来:人工智能和混合现实作为转型的推动者
- 批准号:
2326187 - 财政年份:2023
- 资助金额:
$ 148.58万 - 项目类别:
Standard Grant
Collaborative Research: FW-HTF-RL: Trapeze: Responsible AI-assisted Talent Acquisition for HR Specialists
合作研究:FW-HTF-RL:Trapeze:负责任的人工智能辅助人力资源专家人才获取
- 批准号:
2326194 - 财政年份:2023
- 资助金额:
$ 148.58万 - 项目类别:
Standard Grant