CAREER: Finite Temperature Electronic Structure Methods for Predicting Material Phase Diagrams
职业:预测材料相图的有限温度电子结构方法
基本信息
- 批准号:2046744
- 负责人:
- 金额:$ 65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Brenda Rubenstein of Brown University is jointly funded by the Chemical Theory, Models and Computational Methods program in the Division of Chemistry, and the Established Program to Stimulate Competitive Research (EPSCoR) to develop new methods for modeling the finite temperature electronic properties of correlated materials. In applications ranging from catalysis to astrophysics to material science, molecules and materials can be subjected to high temperatures. Nevertheless, relatively few theories exist to predict how these materials will behave at such temperatures,thwarting our ability to engineer materials such as high-Tc superconductors and next-generation thermally-responsive technologies. As part of this project, the Rubenstein Group will develop a suite of complementary theories and simulation techniques that will enable the high-accuracy modeling of complex materials at finite temperatures. In addition to this research, the Rubenstein Group will bolster its ongoing efforts to actively mentor historically-underrepresented high school students in Rhode Island through the science fair process via the Rhode Island American Chemical Society Project SEED and Advocate Programs (which Dr. Rubenstein leads) and grant area high school students opportunities to engage in real experiments through the Brown University Chemistry Department’s STEM Day Program. Dr. Rubenstein also is developing a new Accelerating Chemical Discovery course and related textbook with the aim of familiarizing undergraduates in the chemical sciences with how data science can be leveraged to solve everyday problems in chemistry.The central aim of this proposal is to develop a suite of new finite temperature electronic structure techniques to elucidate the electronic phase diagrams of correlated materials. In plasmonic catalysis, astrophysics, materials science, and many other applications, molecules and materials are subject to high temperatures at which their electrons populate a wide distribution of energy levels. Nevertheless, most electronic structure methods to date have focused on the ground state, and those methods that do account for temperature either do not accurately account for electron correlation or have overwhelmingly been developed to study lattice models that do not capture the unique qualities of real materials. To rise to this challenge, the Rubenstein Group recently developed a new, fully ab initio, fully correlated finite temperature Auxiliary Field Quantum Monte Carlo (FT-AFQMC) method that proved to be able to yield exact results on a wide variety of benchmark molecules and simple solids. In this CAREER proposal, the Rubenstein Group aims to extend this technique to the study of heavier materials, including iron oxide, nickel oxide, vanadium oxide, and chromium triiodide, whose finite temperature electronic phase transitions have yet to be fully understood, while also developing a set of novel supporting mean field, selected CI (configuration interaction), and sampling techniques. These will not only improve FT-AFQMC’s performance, but can also serve as cheaper, stand-alone methods in their own right.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
布朗大学的Brenda Rubenstein由化学系的化学理论,模型和计算方法计划以及刺激竞争研究的既定计划(EPSCoR)共同资助,以开发用于模拟相关材料的有限温度电子特性的新方法。在从催化到天体物理学到材料科学的应用中,分子和材料可能会受到高温的影响。然而,相对较少的理论可以预测这些材料在这样的温度下将如何表现,这阻碍了我们设计高Tc超导体和下一代热响应技术等材料的能力。作为该项目的一部分,Rubenstein集团将开发一套互补的理论和模拟技术,使复杂材料在有限温度下的高精度建模成为可能。除了这项研究,鲁宾斯坦集团将加强其正在进行的努力,积极辅导历史上代表性不足的高中学生在罗得岛通过科学公平的过程中通过罗得岛美国化学学会项目种子和倡导计划(其中博士鲁宾斯坦领导)和授予地区高中学生的机会,通过布朗大学化学系的干一天计划从事真实的实验。Rubenstein博士还正在开发一个新的加速化学发现课程和相关教科书,旨在让化学科学专业的本科生熟悉如何利用数据科学来解决化学中的日常问题。该提案的中心目标是开发一套新的有限温度电子结构技术,以阐明相关材料的电子相图。在等离子体催化、天体物理学、材料科学和许多其他应用中,分子和材料受到高温的影响,在高温下,它们的电子占据了广泛的能级分布。然而,迄今为止,大多数电子结构方法都集中在基态上,并且那些考虑温度的方法要么不能准确地考虑电子相关性,要么已经压倒性地被开发用于研究不能捕获真实的材料的独特性质的晶格模型。为了应对这一挑战,Rubenstein集团最近开发了一种新的,完全从头算,完全相关的有限温度辅助场量子蒙特卡罗(FT-AFQMC)方法,该方法被证明能够在各种基准分子和简单固体上产生精确的结果。在这个CAREER提案中,Rubenstein Group的目标是将这种技术扩展到较重材料的研究,包括氧化铁,氧化镍,氧化钒和三碘化铬,其有限温度电子相变尚未完全理解,同时还开发了一套新的支持平均场,选择CI(组态相互作用)和采样技术。这不仅将提高FT-AFQMC的性能,而且还可以作为更便宜,独立的方法在自己的权利。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brenda Rubenstein其他文献
Coordination between multiple bacterial communities using potassium ion signaling
- DOI:
10.1016/j.bpj.2021.11.736 - 发表时间:
2022-02-11 - 期刊:
- 影响因子:
- 作者:
Joseph T. Incandela;Kangping Hu;Jacob Rosenstein;Brenda Rubenstein;Joseph Larkin - 通讯作者:
Joseph Larkin
Brenda Rubenstein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brenda Rubenstein', 18)}}的其他基金
Beyond DFT: Accurate Simulations of Low Dimensional Materials For Energy and Device Applications
超越 DFT:能源和设备应用中低维材料的精确模拟
- 批准号:
1726213 - 财政年份:2018
- 资助金额:
$ 65万 - 项目类别:
Continuing Grant
相似国自然基金
Finite-time Lyapunov 函数和耦合系统的稳定性分析
- 批准号:11701533
- 批准年份:2017
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Electronic properties of organic semiconductor crystals at finite temperature from first-principles
从第一原理研究有机半导体晶体在有限温度下的电子特性
- 批准号:
23K04667 - 财政年份:2023
- 资助金额:
$ 65万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Theoretical development and computational implementation of Finite Temperature FAM method for study
有限温度 FAM 研究方法的理论发展和计算实现
- 批准号:
2895616 - 财政年份:2023
- 资助金额:
$ 65万 - 项目类别:
Studentship
Finite Temperature Simulation of Non-Markovian Quantum Dynamics in Condensed Phase using Quantum Computers
使用量子计算机对凝聚相非马尔可夫量子动力学进行有限温度模拟
- 批准号:
2320328 - 财政年份:2023
- 资助金额:
$ 65万 - 项目类别:
Continuing Grant
Characterizing Finite-Temperature Topology Via Quantum Computation
通过量子计算表征有限温度拓扑
- 批准号:
2310656 - 财政年份:2023
- 资助金额:
$ 65万 - 项目类别:
Standard Grant
Connecting Parton Cascade to QCDS Shear Viscosity for a Dynamical Model of Finite Temperature Kinetic Theory
将 Parton Cascade 连接到 QCDS 剪切粘度以建立有限温度动力学理论的动态模型
- 批准号:
2310021 - 财政年份:2023
- 资助金额:
$ 65万 - 项目类别:
Standard Grant
Study of finite-temperature phase transition of QCD by gradient flow
梯度流QCD有限温度相变研究
- 批准号:
22K03593 - 财政年份:2022
- 资助金额:
$ 65万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Non-perturbative dynamics and compositeness at finite temperature
有限温度下的非微扰动力学和复合性
- 批准号:
2763883 - 财政年份:2022
- 资助金额:
$ 65万 - 项目类别:
Studentship
Finite-Temperature Modelling of One, Two, and Many Dopants in the 2D Fermi-Hubbard Model
二维 Fermi-Hubbard 模型中一种、两种和多种掺杂剂的有限温度建模
- 批准号:
567963-2022 - 财政年份:2022
- 资助金额:
$ 65万 - 项目类别:
Postgraduate Scholarships - Doctoral
First-principles calculations of finite temperature transport properties
有限温度传输特性的第一性原理计算
- 批准号:
22K14285 - 财政年份:2022
- 资助金额:
$ 65万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Many Body Localisation in the Solid State for Finite Temperature Quantum Computing
用于有限温度量子计算的固态多体定位
- 批准号:
EP/V047000/1 - 财政年份:2021
- 资助金额:
$ 65万 - 项目类别:
Research Grant