CAREER: Physics Regularized Machine Learning Theory: Modeling Stochastic Traffic Flow Patterns for Smart Mobility Systems

职业:物理正则化机器学习理论:为智能移动系统建模随机交通流模式

基本信息

  • 批准号:
    2047268
  • 负责人:
  • 金额:
    $ 54.41万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-03-15 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

This Faculty Early Career Development (CAREER) grant will support fundamental research in modeling stochastic traffic flows for smart mobility systems, based on the fusion of classical transportation models and learning techniques. With the goals of mitigating traffic congestions, improving transportation safety, and reducing vehicle emissions, many smart mobility applications require accurate, reliable, and timely traffic information as input. To meet such needs, this project will lay the foundation of machine learning and traffic flow theory to yield better estimations and predictions of mobility patterns. The method uses transportation domain knowledge to regularize the training process of machine learning. The results will significantly enhance the effectiveness and robustness of those smart mobility applications at both small and large scales. The research activities can be closely integrated with a set of education and outreach activities that include (i) developing a virtual computing lab to facilitate student educations, researcher engagement, government employee training, and industry collaboration, (ii) modernizing the transportation curriculum with research outcomes, (iii) broadening the participation of k-12 students in the annual summer “Transportation Camps” and underrepresented students in the Artificial Intelligence club of a minority-serving institution. Those activities will help transportation students better recognize the importance of engineering knowledge in the era of smart mobility system.The goal of this project is to contribute fundamental theories and a set of markedly improved algorithms to traffic flow modeling. Leveraging the concept of physics regularized machine learning, the research could encode both continuous and discretized traffic flow models into Gaussian process for training regularization. This new model can efficiently resolve the common data sparsity and noise issues and facilitate various smart mobility applications. To accommodate streaming data, this project will also develop a novel physics regularized streaming learning framework that can efficiently improve the model performances in real-time. When dealing with big data, this project can further synergize data of different resolutions, fidelities, and sources to enable sparse Gaussian process and Bayesian committee machine for fast learning. This foundational research can enormously promote machine learning applications in smart mobility systems and contribute to formulating sustainable, scalable, and robust traffic flow models. This project will bridge the gap between classical transportation methods and data-driven approaches.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该学院早期职业发展(CAREER)补助金将支持基于经典交通模型和学习技术的融合,为智能移动系统建模随机交通流的基础研究。为了减轻交通拥堵、提高运输安全和减少车辆排放,许多智能移动应用需要准确、可靠和及时的交通信息作为输入。为了满足这些需求,该项目将奠定机器学习和交通流理论的基础,以更好地估计和预测移动模式。该方法利用交通领域的知识来规范机器学习的训练过程。研究结果将大大提高这些智能移动应用在小型和大型规模上的有效性和鲁棒性。研究活动可以与一系列教育和推广活动紧密结合,包括(i)开发虚拟计算实验室,以促进学生教育,研究人员参与,政府雇员培训和行业合作,(ii)利用研究成果使交通课程现代化,(iii)扩大k-12学生参与每年一度的夏季“交通营”,以及在少数族裔服务机构的人工智能俱乐部中代表性不足的学生的参与。本项目的目的是为交通流建模提供基础理论和一套显著改进的算法。利用物理学正则化机器学习的概念,将连续和离散的交通流模型编码为高斯过程进行训练正则化。这种新模型可以有效地解决常见的数据稀疏性和噪声问题,并促进各种智能移动应用。为了适应流数据,该项目还将开发一种新的物理正则化流学习框架,可以有效地实时提高模型性能。在处理大数据时,该项目可以进一步协同不同分辨率、分辨率和来源的数据,使稀疏高斯过程和贝叶斯委员会机器能够快速学习。这项基础研究可以极大地促进机器学习在智能移动系统中的应用,并有助于制定可持续、可扩展和鲁棒的交通流模型。该项目将弥合传统运输方法和数据驱动方法之间的差距。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Infrastructure enabled and electrified automation: Charging facility planning for cleaner smart mobility
Traffic Flow Modeling With Gradual Physics Regularized Learning
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xianfeng Yang其他文献

Surface characterization of silicon nitride powder and electrokinetic behavior of its aqueous suspension
氮化硅粉末的表面表征及其水悬浮液的动电行为
  • DOI:
    10.1016/j.ceramint.2019.12.215
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Zhentao Ni;Jie Jiang;Xianfeng Yang;Xiaole Yang;Zhe Zhou;Qinglong He
  • 通讯作者:
    Qinglong He
Theoretical analysis and multi-objective optimization for gradient engineering material arresting system.
梯度工程材料拦阻系统理论分析与多目标优化
Issues for Event Monitoring in Event-Driven Wireless Sensor Networks
事件驱动的无线传感器网络中的事件监控问题
Efficient genome editing of rubber tree (Hevea brasiliensis) using CRISPR/Cas9 ribonucleoproteins
使用 CRISPR/Cas9 核糖核蛋白对橡胶树(Hevea brasiliensis)进行高效基因组编辑
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    5.9
  • 作者:
    Yueting Fan;Shichao Xin;Xuemei Dai;Xianfeng Yang;Huasun Huang;Yuwei Hua
  • 通讯作者:
    Yuwei Hua
Crushing behavior and energy absorption of a bio-inspired bi-directional corrugated lattice under quasi-static compression load
仿生双向波纹网格在准静态压缩载荷下的破碎行为和能量吸收
  • DOI:
    10.1016/j.compstruct.2022.115315
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    6.3
  • 作者:
    Bo Li;Hua Liu;Qiao Zhang;Xianfeng Yang;Jialing Yang
  • 通讯作者:
    Jialing Yang

Xianfeng Yang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xianfeng Yang', 18)}}的其他基金

RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
  • 批准号:
    2427231
  • 财政年份:
    2024
  • 资助金额:
    $ 54.41万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Stochastic Simulation Platform for Assessing Safety Performance of Autonomous Vehicles in Winter Seasons
合作研究:OAC Core:用于评估冬季自动驾驶汽车安全性能的随机仿真平台
  • 批准号:
    2234292
  • 财政年份:
    2022
  • 资助金额:
    $ 54.41万
  • 项目类别:
    Standard Grant
CAREER: Physics Regularized Machine Learning Theory: Modeling Stochastic Traffic Flow Patterns for Smart Mobility Systems
职业:物理正则化机器学习理论:为智能移动系统建模随机交通流模式
  • 批准号:
    2234289
  • 财政年份:
    2022
  • 资助金额:
    $ 54.41万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Stochastic Simulation Platform for Assessing Safety Performance of Autonomous Vehicles in Winter Seasons
合作研究:OAC Core:用于评估冬季自动驾驶汽车安全性能的随机仿真平台
  • 批准号:
    2106991
  • 财政年份:
    2021
  • 资助金额:
    $ 54.41万
  • 项目类别:
    Standard Grant

相似国自然基金

Understanding complicated gravitational physics by simple two-shell systems
  • 批准号:
    12005059
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Chinese Physics B
  • 批准号:
    11224806
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Science China-Physics, Mechanics & Astronomy
  • 批准号:
    11224804
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Frontiers of Physics 出版资助
  • 批准号:
    11224805
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Chinese physics B
  • 批准号:
    11024806
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Discovering early biomarkers of Alzheimer's disease using genetic and physics-informed networks
利用遗传和物理信息网络发现阿尔茨海默病的早期生物标志物
  • 批准号:
    2904538
  • 财政年份:
    2024
  • 资助金额:
    $ 54.41万
  • 项目类别:
    Studentship
Searching for New Physics with the CMS experiment at the LHC
通过 LHC 的 CMS 实验寻找新物理
  • 批准号:
    2908368
  • 财政年份:
    2024
  • 资助金额:
    $ 54.41万
  • 项目类别:
    Studentship
PIDD-MSK: Physics-Informed Data-Driven Musculoskeletal Modelling
PIDD-MSK:物理信息数据驱动的肌肉骨骼建模
  • 批准号:
    EP/Y027930/1
  • 财政年份:
    2024
  • 资助金额:
    $ 54.41万
  • 项目类别:
    Fellowship
Unveiling the Physics of High-Density Relativistic Pair Plasma Jets in the Laboratory
在实验室中揭示高密度相对论对等离子体射流的物理原理
  • 批准号:
    EP/Y035038/1
  • 财政年份:
    2024
  • 资助金额:
    $ 54.41万
  • 项目类别:
    Research Grant
Astroparticle Physics with a Trapped Electron
俘获电子的天体粒子物理学
  • 批准号:
    EP/Y036263/1
  • 财政年份:
    2024
  • 资助金额:
    $ 54.41万
  • 项目类别:
    Research Grant
LHCb Upgrade II: preconstruction for the ultimate LHC flavour physics experiment
LHCb 升级 II:终极 LHC 风味物理实验的预构建
  • 批准号:
    ST/X006484/1
  • 财政年份:
    2024
  • 资助金额:
    $ 54.41万
  • 项目类别:
    Research Grant
Nuclear Physics Consolidated Grant
核物理综合拨款
  • 批准号:
    ST/Y000277/1
  • 财政年份:
    2024
  • 资助金额:
    $ 54.41万
  • 项目类别:
    Research Grant
Manchester Nuclear Physics CG 2023
曼彻斯特核物理 CG 2023
  • 批准号:
    ST/Y000323/1
  • 财政年份:
    2024
  • 资助金额:
    $ 54.41万
  • 项目类别:
    Research Grant
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
  • 批准号:
    2321102
  • 财政年份:
    2024
  • 资助金额:
    $ 54.41万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
  • 批准号:
    2327473
  • 财政年份:
    2024
  • 资助金额:
    $ 54.41万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了