CAREER: Molecular mechanisms of ribonucleoprotein assembly

职业:核糖核蛋白组装的分子机制

基本信息

  • 批准号:
    2047328
  • 负责人:
  • 金额:
    $ 104.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-01-01 至 2025-12-31
  • 项目状态:
    未结题

项目摘要

Ribonucleic acid (RNA) is an essential biological molecule that performs diverse roles in cellular processes. To carry out its function, RNA must first fold into the correct structure and assemble with required cofactors such as proteins. Despite having a central role in biology, a comprehensive understanding of how RNA folds and binds to protein is lacking. To address these gaps in knowledge, this project uses the 7SK ribonucleoprotein (RNP) complex, a crucial regulator of cell function, as a model system. In addition, this project will characterize folding of synthetic RNAs that bind dyes to become fluorescent that, when tagged onto biologically important RNAs, can be used to observe RNA in live cells. Results arising from the project will provide fundamental insights into RNA structure-function relationships for RNAs involved in biological processes and produce general rules for RNP assembly. The project entwines education alongside research to increase retention and diversity of the next generation of scientists. This project will develop educational activities including incorporating discovery-based chemical biology laboratory coursework into the undergraduate curriculum. Hands-on workshops will be held in partnership with established programs at the University of Nebraska – Lincoln to engage the public in RNA science. RNPs are essential for cell function, yet without comprehensive knowledge of RNA structure and RNP assembly the molecular mechanisms directing cell function cannot be fully understood. The 7SK RNP, a major regulator of eukaryotic transcription, is an ideal model system to advance limited knowledge of RNA-regulated cell function. A fundamental understanding of 7SK RNP structure and assembly will advance understanding of transcription regulation and assembly of other regulatory RNPs; however, there are significant gaps in understanding how 7SK RNA folds and assembles into a functional RNP. To overcome these gaps, this project employs multidisciplinary approaches to determine 7SK RNA structural dynamics, characterize 7SK RNA-protein interactions important for regulatory function; and integrate a fluorescent RNA aptamer into 7SK RNA for live cell imaging in vivo. To achieve these objectives, combined solution NMR spectroscopy, X-ray crystallography, cellular approaches, binding assays, and fluorescence microscopy methods will be used. This project will elucidate the molecular mechanisms of RNA folding and RNP assembly using integrated biophysical and chemical biology approaches, in concert with education activities to advance and support underrepresented communities in STEM. This project is jointly supported by the Molecular Biophysics Cluster of the Molecular and Cellular Biosciences Division in the Directorate for Biological Sciences and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
核糖核酸(RNA)是一种重要的生物分子,在细胞过程中发挥着不同的作用。为了实现其功能,RNA必须首先折叠成正确的结构,并与所需的辅因子(如蛋白质)组装。尽管在生物学中起着核心作用,但人们对RNA如何折叠和结合蛋白质缺乏全面的了解。为了解决这些知识空白,该项目使用7SK核糖核蛋白(RNP)复合物作为模型系统,该复合物是细胞功能的关键调节剂。此外,该项目还将表征合成RNA的折叠,这些RNA结合染料成为荧光,当标记到生物学上重要的RNA上时,可用于观察活细胞中的RNA。该项目的结果将为参与生物过程的RNA的RNA结构-功能关系提供基本见解,并为RNP组装产生一般规则。该项目将教育与研究结合起来,以提高下一代科学家的保留率和多样性。该项目将开发教育活动,包括将基于发现的化学生物学实验室课程纳入本科课程。实践研讨会将与内布拉斯加大学林肯分校的既定项目合作举办,以吸引公众参与RNA科学。RNP对于细胞功能是必不可少的,但是如果没有RNA结构和RNP组装的全面知识,指导细胞功能的分子机制就不能完全理解。7SK RNP是真核生物转录的主要调节因子,是推进RNA调节细胞功能的有限知识的理想模型系统。对7SK RNP结构和组装的基本理解将促进对转录调控和其他调控RNP组装的理解;然而,在理解7SK RNA如何折叠和组装成功能性RNP方面存在重大差距。为了克服这些差距,该项目采用多学科方法来确定7SK RNA结构动力学,表征对调节功能重要的7SK RNA-蛋白质相互作用;并将荧光RNA适体整合到7SK RNA中用于体内活细胞成像。为了实现这些目标,将使用组合溶液NMR光谱学、X射线晶体学、细胞方法、结合测定和荧光显微镜方法。该项目将阐明RNA折叠和RNP组装的分子机制,使用综合的生物物理和化学生物学方法,与教育活动相结合,以促进和支持STEM中代表性不足的社区。该项目由生物科学理事会分子和细胞生物科学部的分子生物物理学小组和刺激竞争性研究的既定计划(EPSCoR)共同支持。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Catherine Eichhorn其他文献

Catherine Eichhorn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Kidney injury molecular(KIM-1)介导肾小管上皮细胞自噬在糖尿病肾病肾间质纤维化中的作用
  • 批准号:
    81300605
  • 批准年份:
    2013
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
Molecular Plant
  • 批准号:
    31224801
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
  • 批准号:
    31070748
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
Molecular Plant
  • 批准号:
    31024802
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Cellular & Molecular Immunology
  • 批准号:
    30824806
  • 批准年份:
    2008
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

CAREER: Understanding the Molecular Mechanisms of Insect Cuticular Chitin Maintenance
职业:了解昆虫表皮几丁质维持的分子机制
  • 批准号:
    2338209
  • 财政年份:
    2024
  • 资助金额:
    $ 104.9万
  • 项目类别:
    Continuing Grant
CAREER: Molecular mechanisms of tardigrade disordered proteins adapted to protect against environmental stress
职业:缓步动物无序蛋白质适应环境压力的分子机制
  • 批准号:
    2338323
  • 财政年份:
    2024
  • 资助金额:
    $ 104.9万
  • 项目类别:
    Continuing Grant
CAREER: Molecular mechanisms of pH sensitive proteins, pathways, and cell behaviors
职业:pH 敏感蛋白的分子机制、通​​路和细胞行为
  • 批准号:
    2238694
  • 财政年份:
    2023
  • 资助金额:
    $ 104.9万
  • 项目类别:
    Continuing Grant
CAREER: Molecular mechanisms, algorithms and software for design and analysis of genome perturbation experiments
职业:用于设计和分析基因组扰动实验的分子机制、算法和软件
  • 批准号:
    2238831
  • 财政年份:
    2023
  • 资助金额:
    $ 104.9万
  • 项目类别:
    Continuing Grant
CAREER: Molecular and Cellular Mechanisms Underlying Circuit-Host Interactions
职业:电路-宿主相互作用的分子和细胞机制
  • 批准号:
    2143229
  • 财政年份:
    2022
  • 资助金额:
    $ 104.9万
  • 项目类别:
    Continuing Grant
CAREER: Mechanisms Controlling Signaling Reactions on Membranes through Molecular Assembly at Multiple Length Scales
职业:通过多长度尺度的分子组装控制膜上信号反应的机制
  • 批准号:
    2145852
  • 财政年份:
    2022
  • 资助金额:
    $ 104.9万
  • 项目类别:
    Continuing Grant
CAREER: Understanding Molecular Mechanisms Underlying Chemical Behavior of Pollutants in Heterogeneous Environmental Systems
职业:了解异质环境系统中污染物化学行为的分子机制
  • 批准号:
    2144591
  • 财政年份:
    2022
  • 资助金额:
    $ 104.9万
  • 项目类别:
    Continuing Grant
CAREER: Molecular Mechanisms Underlying Redox Chemistry in Electrochemical Cells from First Principles
职业:从第一原理开始研究电化学电池中氧化还原化学的分子机制
  • 批准号:
    2145144
  • 财政年份:
    2022
  • 资助金额:
    $ 104.9万
  • 项目类别:
    Continuing Grant
CAREER: Characterizing molecular mechanisms that drive life cycle transitions in the African trypanosome
职业:描述驱动非洲锥虫生命周期转变的分子机制
  • 批准号:
    2041395
  • 财政年份:
    2021
  • 资助金额:
    $ 104.9万
  • 项目类别:
    Continuing Grant
CAREER: Convergent molecular mechanisms regulating dormancy in Vibrios
职业:调节弧菌休眠的趋同分子机制
  • 批准号:
    2045671
  • 财政年份:
    2021
  • 资助金额:
    $ 104.9万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了