CAREER: Molecular Mechanisms Underlying Redox Chemistry in Electrochemical Cells from First Principles

职业:从第一原理开始研究电化学电池中氧化还原化学的分子机制

基本信息

  • 批准号:
    2145144
  • 负责人:
  • 金额:
    $ 67.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-04-01 至 2027-03-31
  • 项目状态:
    未结题

项目摘要

Fast-charging, durable and sustainable batteries are critical for the applications of stationary, grid-scale energy storage and for propulsion in battery electric vehicles. The chemical and physical processes that occur at the electrode surface of a battery contacting the electrolyte has a significant impact on the overall observed performance of the system. Understanding the mechanisms of the chemistry and physics at the electrode’s interface with the battery electrolyte has been an ongoing challenge due to the complexity of the materials chemistry, morphology, and coupling of electrochemical processes. Predictive modeling of these electrochemical interfaces is a grand challenge, with potentially revolutionary scientific and technological applications. This project will develop a first principles, physics based, computational platform for elucidating the complex physics, structure, and dynamics of electrolytic solutions next to “realistic” electrodes, i.e., those with non-uniform surface geometries, chemistries, and morphologies. The successful completion of the project will lead to an improved understanding of the complex processes at the electrode, leading to new strategies for optimizing high energy density batteries, fuel cells, and other electrochemical systems. The project includes research opportunities for high school, community college, undergraduate, and graduate students. An example educational effort is development of a Immersive Material Discovery Platform to enable enriched hands-on, active learning for the teaching of computational electrochemistry that will use virtual reality, sound, and haptic feedback.Determining the properties of the nanoscale region at the electrode/electrolyte interface is of importance because near a polarizable metal interface, and in contrast to the bulk, symmetry breaking results in unique quantum mechanical effects that in turn gives rise to modified electrolyte structure, dynamics, and thermodynamics, which ultimately determines device function. This project’s computational framework addresses an approach that is capable of describing solvent dynamics, and charge transfer and reorganization physics at the electrode and in the electric double layer, while fully capturing the response due to a change in electrode potential. The project’s computational framework addresses the fundamental question of how changes in the electrode electron density affects the solvation dynamics and charge fluctuations of nearby ionic species. The project includes extensive computer simulations with several novel algorithmic and theoretical advances. The first objective of the project will describe the critical electrostatics using an interface sensitive, fluctuating charge model that will allow the modelling of Lithium in its metallic, semi-metallic and ionic states within the same simulation cell. The second objective will develop an approach for simulating applied voltage bias, based on self-consistently adjusting the electrochemical potential of the dynamically varying electrode atoms. Both advances will enable simulations of the charge/discharge process in a full-cell battery setup. The third research objective will relate changes in the interfacial atomic structure to the QM electronic structure by simulated X-ray spectroscopy. These spectra will be directly comparable to recent interface sensitive X-ray measurements, providing a feedback loop for both validating and improving the theory. The successful completion of the project is expected to address a critical knowledge gap concerning role of charge renormalization and transfer at model electrodes, due to electrolyte dynamics. Research outcomes will enable predictive design and nanoscale engineering optimization strategies for new high energy density battery systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
快速充电、耐用和可持续的电池对于固定、电网规模的储能应用和电池电动汽车的推进至关重要。在电池的电极表面接触电解质处发生的化学和物理过程对系统的总体观察性能具有显著影响。由于材料化学、形态和电化学过程耦合的复杂性,理解电极与电池电解质界面处的化学和物理机制一直是一个持续的挑战。这些电化学界面的预测建模是一个巨大的挑战,具有潜在的革命性科学和技术应用。该项目将开发一个基于物理学的第一原理计算平台,用于阐明“现实”电极旁边电解溶液的复杂物理、结构和动力学,即,具有不均匀的表面几何形状、化学性质和形态的那些。该项目的成功完成将使人们更好地理解电极的复杂过程,从而为优化高能量密度电池、燃料电池和其他电化学系统提供新的策略。该项目包括高中,社区学院,本科生和研究生的研究机会。一个示例教育工作是开发沉浸式材料发现平台,以使丰富的动手,主动学习的教学计算电化学,将使用虚拟现实,声音和触觉反馈。确定电极/电解质界面处的纳米级区域的性质是重要的,因为在可极化金属界面附近,与本体相比,对称性破缺导致独特的量子力学效应,该效应又引起改变的电解质结构、动力学和热力学,其最终决定器件功能。该项目的计算框架提出了一种能够描述溶剂动力学以及电极和双电层中的电荷转移和重组物理学的方法,同时完全捕获由于电极电位变化引起的响应。该项目的计算框架解决了电极电子密度的变化如何影响附近离子物种的溶剂化动力学和电荷波动的基本问题。该项目包括广泛的计算机模拟与几个新的算法和理论的进步。该项目的第一个目标将使用界面敏感的波动电荷模型来描述临界静电,该模型将允许在同一模拟电池中对其金属,半金属和离子状态的锂进行建模。第二个目标将开发一种用于模拟施加的电压偏置的方法,基于自一致地调节动态变化的电极原子的电化学电势。这两项进展将使模拟充电/放电过程中的全电池电池设置。第三个研究目标是通过模拟X射线光谱将界面原子结构的变化与QM电子结构联系起来。这些光谱将直接与最近的界面敏感的X射线测量相比较,为验证和改进理论提供反馈回路。该项目的成功完成,预计将解决一个关键的知识差距有关的作用,电荷重整化和转移模型电极,由于电解质动力学。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Investigation of local distortion effects on X-ray absorption of ferroelectric perovskites from first principles simulations
  • DOI:
    10.1039/d2nr05732h
  • 发表时间:
    2023-02-13
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Abbasi, Pedram;Fenning, David P.;Pascal, Tod A.
  • 通讯作者:
    Pascal, Tod A.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tod Pascal其他文献

Tod Pascal的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Kidney injury molecular(KIM-1)介导肾小管上皮细胞自噬在糖尿病肾病肾间质纤维化中的作用
  • 批准号:
    81300605
  • 批准年份:
    2013
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
Molecular Plant
  • 批准号:
    31224801
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
  • 批准号:
    31070748
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
Molecular Plant
  • 批准号:
    31024802
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Cellular & Molecular Immunology
  • 批准号:
    30824806
  • 批准年份:
    2008
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

CAREER: Understanding the Molecular Mechanisms of Insect Cuticular Chitin Maintenance
职业:了解昆虫表皮几丁质维持的分子机制
  • 批准号:
    2338209
  • 财政年份:
    2024
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Continuing Grant
CAREER: Molecular mechanisms of tardigrade disordered proteins adapted to protect against environmental stress
职业:缓步动物无序蛋白质适应环境压力的分子机制
  • 批准号:
    2338323
  • 财政年份:
    2024
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Continuing Grant
CAREER: Molecular mechanisms of pH sensitive proteins, pathways, and cell behaviors
职业:pH 敏感蛋白的分子机制、通​​路和细胞行为
  • 批准号:
    2238694
  • 财政年份:
    2023
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Continuing Grant
CAREER: Molecular mechanisms, algorithms and software for design and analysis of genome perturbation experiments
职业:用于设计和分析基因组扰动实验的分子机制、算法和软件
  • 批准号:
    2238831
  • 财政年份:
    2023
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Continuing Grant
CAREER: Molecular and Cellular Mechanisms Underlying Circuit-Host Interactions
职业:电路-宿主相互作用的分子和细胞机制
  • 批准号:
    2143229
  • 财政年份:
    2022
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Continuing Grant
CAREER: Mechanisms Controlling Signaling Reactions on Membranes through Molecular Assembly at Multiple Length Scales
职业:通过多长度尺度的分子组装控制膜上信号反应的机制
  • 批准号:
    2145852
  • 财政年份:
    2022
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Continuing Grant
CAREER: Understanding Molecular Mechanisms Underlying Chemical Behavior of Pollutants in Heterogeneous Environmental Systems
职业:了解异质环境系统中污染物化学行为的分子机制
  • 批准号:
    2144591
  • 财政年份:
    2022
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Continuing Grant
CAREER: Characterizing molecular mechanisms that drive life cycle transitions in the African trypanosome
职业:描述驱动非洲锥虫生命周期转变的分子机制
  • 批准号:
    2041395
  • 财政年份:
    2021
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Continuing Grant
CAREER: Molecular mechanisms of ribonucleoprotein assembly
职业:核糖核蛋白组装的分子机制
  • 批准号:
    2047328
  • 财政年份:
    2021
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Continuing Grant
CAREER: Convergent molecular mechanisms regulating dormancy in Vibrios
职业:调节弧菌休眠的趋同分子机制
  • 批准号:
    2045671
  • 财政年份:
    2021
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了