CAREER: Brain-inspired Methods for Continual Learning of Large-scale Vision and Language Tasks

职业:持续学习大规模视觉和语言任务的受大脑启发的方法

基本信息

  • 批准号:
    2047556
  • 负责人:
  • 金额:
    $ 55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-12-01 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

The goal of this research project is to create deep neural networks that excel in a broad set of circumstances, are capable of learning from new data over time, and are robust to dataset bias. Deep neural networks can now perform some tasks as well as humans, such as identifying faces, recognizing objects, and other perception tasks. However, existing approaches have limitations, including the inability to effectively learn over time when data is structured without forgetting past information, learning slowly by looping over data many times, and amplification of pre-existing dataset bias which results in erroneous predictions for groups with less data. To overcome these problems, this research project aims to incorporate memory consolidation processes inspired by the mammalian memory system that occur both when animals are awake and asleep. The new methods developed in this project could lead to machine learning systems that 1) are more power efficient, 2) can learn on low-powered mobile devices and robots, and 3) can overcome bias in datasets. In addition, a significant educational component involves training the next generation of scientists and engineers in deploying machine learning systems that are safe, reliable, and well tested via new courses and programs.In greater technical detail, this project will develop new measures for neural networks to 1) test for biases, 2) assess the acquisition of robust concepts, and 3) study forward transfer in neural networks trained over time. New brain-inspired algorithms are proposed that learn online but then have downtime periods in which they engage in greater levels of memory consolidation, which are informed by findings in neuroscience for the neural activities that occur during the wake-sleep cycles of humans and other mammals. The proposed algorithms are based on the brain's complementary learning systems for memory formation, storage, and retrieval. The models are evaluated on large-scale incremental image classification tasks as well as tasks involving multi-modal scene understanding and abstract reasoning. This research will provide building blocks that others can use to create new algorithms and applications. All code and datasets will be made publicly available.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该研究项目的目标是创建深度神经网络,该网络在广泛的环境中表现出色,能够随着时间的推移从新数据中学习,并且对数据集偏差具有鲁棒性。深度神经网络现在可以像人类一样执行一些任务,例如识别人脸,识别物体和其他感知任务。然而,现有的方法具有局限性,包括当数据被结构化而不忘记过去的信息时,无法随着时间的推移有效地学习,通过多次循环数据来缓慢地学习,以及放大预先存在的数据集偏差,这导致对具有较少数据的组的错误预测。为了克服这些问题,该研究项目旨在将受哺乳动物记忆系统启发的记忆巩固过程纳入动物清醒和睡眠时都会发生的记忆巩固过程。该项目中开发的新方法可能会导致机器学习系统1)更节能,2)可以在低功耗的移动的设备和机器人上学习,3)可以克服数据集中的偏见。此外,一个重要的教育组成部分涉及培训下一代科学家和工程师部署机器学习系统,这些系统是安全的,可靠的,并通过新的课程和计划进行了良好的测试。在更详细的技术细节中,该项目将开发神经网络的新措施,以1)测试偏差,2)评估稳健概念的获得,3)研究随时间训练的神经网络中的前向传递。人们提出了新的大脑启发算法,可以在线学习,但随后会有停机时间,在此期间它们会进行更高水平的记忆巩固,这是由神经科学对人类和其他哺乳动物醒-睡周期期间发生的神经活动的发现所提供的信息。所提出的算法是基于大脑的互补学习系统的记忆形成,存储和检索。这些模型在大规模增量图像分类任务以及涉及多模态场景理解和抽象推理的任务上进行了评估。这项研究将提供其他人可以用来创建新算法和应用程序的构建块。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
OccamNets: Mitigating Dataset Bias by Favoring Simpler Hypotheses
  • DOI:
    10.48550/arxiv.2204.02426
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Robik Shrestha;Kushal Kafle;Christopher Kanan
  • 通讯作者:
    Robik Shrestha;Kushal Kafle;Christopher Kanan
Online Continual Learning for Embedded Devices
  • DOI:
    10.48550/arxiv.2203.10681
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tyler L. Hayes;Christopher Kanan
  • 通讯作者:
    Tyler L. Hayes;Christopher Kanan
How efficient are today’s continual learning algorithms?
当今持续学习算法的效率如何?
BiasedMNIST
有偏见的MNIST
Detecting Out-Of-Context Objects Using Graph Context Reasoning Network
使用图上下文推理网络检测脱离上下文的对象
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Acharya, M;Roy, A;Koneripalli, K;Jha, Susmit;Kanan, C;Divakaran, A
  • 通讯作者:
    Divakaran, A
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christopher Kanan其他文献

NIMBLER : A Model of Visual Attention and Object Recognition With a Biologically Plausible Retina
NIBLER:具有生物学上合理的视网膜的视觉注意力和物体识别模型
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Christopher Kanan
  • 通讯作者:
    Christopher Kanan
TallyQA: Answering Complex Counting Questions
TallyQA:回答复杂的计数问题
Automatic scanpath generation with deep recurrent neural networks
使用深度循环神经网络自动生成扫描路径
A Bayesian Model of Visual Question Answering
视觉问答的贝叶斯模型
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Christopher Kanan;Kushal Kafle
  • 通讯作者:
    Kushal Kafle
Anatomically Informed 3D Printed CT phantoms: The First Step of a Pipeline To Identify Robust Quantitative Radiomic Features
解剖学信息丰富的 3D 打印 CT 模型:识别稳健的定量放射学特征的第一步
  • DOI:
    10.1101/773879
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    U. Mahmood;A. Apte;Christopher Kanan;D. Bates;G. Corrias;Lorenzo Manneli;J. Oh;Y. Erdi;John Nguyen;J. Deasy;A. Shukla
  • 通讯作者:
    A. Shukla

Christopher Kanan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christopher Kanan', 18)}}的其他基金

CAREER: Brain-inspired Methods for Continual Learning of Large-scale Vision and Language Tasks
职业:持续学习大规模视觉和语言任务的受大脑启发的方法
  • 批准号:
    2326491
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
RI: Small: Lifelong Multimodal Concept Learning
RI:小型:终身多模式概念学习
  • 批准号:
    1909696
  • 财政年份:
    2019
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant

相似国自然基金

Sitagliptin通过microbiota-gut-brain轴在2型糖尿病致阿尔茨海默样变中的脑保护作用机制
  • 批准号:
    81801389
  • 批准年份:
    2018
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
平扫描数据导引的超低剂量Brain-PCT成像新方法研究
  • 批准号:
    81101046
  • 批准年份:
    2011
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Trustworthy Distributed Brain-inspired Systems: Theoretical Basis and Hardware Implementation
值得信赖的分布式类脑系统:理论基础和硬件实现
  • 批准号:
    EP/Y03631X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Research Grant
SGAI: Brain-Inspired Nanosystems for Smart and Green AI
SGAI:用于智能和绿色人工智能的受大脑启发的纳米系统
  • 批准号:
    EP/X011356/1
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Fellowship
CPS: Small: Brain-Inspired Memorization and Attention for Intelligent Sensing
CPS:小:智能传感的受大脑启发的记忆和注意力
  • 批准号:
    2312517
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
EFRI BRAID: Brain-inspired Algorithms for Autonomous Robots (BAAR)
EFRI BRAID:自主机器人的类脑算法 (BAAR)
  • 批准号:
    2318065
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
FuSe-TG: Co-designing Novel Memristor Heterostructures for Brain Inspired Computers
FuSe-TG:为类脑计算机共同设计新型忆阻器异质结构
  • 批准号:
    2235474
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Memory in a Droplet: Collections of Brain-Inspired Biomolecular Elements
液滴中的记忆:受大脑启发的生物分子元素的集合
  • 批准号:
    2310360
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Mathematical Foundations of Brain-Inspired Computing Based on Diversity
基于多样性的类脑计算的数学基础
  • 批准号:
    23H03464
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Novel brain-inspired and neuromorphic photonic computing
新颖的受大脑启发的神经形态光子计算
  • 批准号:
    2733978
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Studentship
ECCS-EPSRC: NeuroComm: Brain-Inspired Wireless Communications -- From Theoretical Foundations to Implementation for 6G and Beyond
ECCS-EPSRC:NeuroComm:受大脑启发的无线通信——从理论基础到 6G 及更高版本的实施
  • 批准号:
    2335876
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Securing Brain-inspired Hyperdimensional Computing against Design-time and Run-time Attacks for Edge Devices
协作研究:SaTC:核心:小型:保护类脑超维计算免受边缘设备的设计时和运行时攻击
  • 批准号:
    2326597
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了