EFRI BRAID: Brain-inspired Algorithms for Autonomous Robots (BAAR)

EFRI BRAID:自主机器人的类脑算法 (BAAR)

基本信息

  • 批准号:
    2318065
  • 负责人:
  • 金额:
    $ 200万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2027-08-31
  • 项目状态:
    未结题

项目摘要

Autonomous robots, such as self-driving vehicles (SDVs) and household collaborative robots (Cobots), possess great potential to benefit society and meet several important national needs. Although artificial intelligence (AI) has made substantial progress, the current data/computational efficiency and adaptability of autonomous robots pale in comparison to humans in performing routine sensorimotor tasks such as driving and cooking. Enabling such autonomous robots to continually learn from experience and persistently improve their efficiency and resilience in the real world as humans do is imperative for their widespread deployments. This project aims to develop novel computational algorithms for robot autonomy with principles and insights of neurobiological learning and brain intelligence. The outcomes could make a multifaceted and transformative impact on autonomous robots such as SDVs, Cobots, and other intelligent robotic systems in manufacturing and healthcare applications that face the same challenges of computational/data inefficiency and adaptation inflexibility.The project seeks to provide a paradigm shift in autonomous robotic systems by incorporating brain-inspired intelligence throughout their fundamental and core capabilities of perception, planning, and continual learning. Using convergent engineering-science approaches, the project aims to create a fundamental and innovative framework of brain-inspired perception, learning, and planning algorithms for autonomous robots. The framework will be applied to SDVs and Cobots as two representative and complementary engineering systems through combined theoretical and empirical studies. Integrating brain-inspired innovations, the work will adapt and engineer the general brain-inspired methods and algorithms to SDVs and Cobots for experimental validation of the effectiveness in data- and energy-efficiency, adaptability, and resiliency. It is expected that the findings will not only provide a significant leap to SDVs and Cobots toward their real-world deployments, but also have a transformative impact on other intelligent robotic systems such as those in manufacturing and healthcare domains by improving their data/computation efficiency, adaptation resiliency, and intelligence interpretability.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
自动驾驶汽车(SDV)和家庭协作机器人(Cobot)等自主机器人具有造福社会并满足多项重要国家需求的巨大潜力。 尽管人工智能(AI)已经取得了长足的进步,但在执行驾驶和烹饪等日常感觉运动任务时,自主机器人目前的数据/计算效率和适应性与人类相比相形见绌。 使此类自主机器人能够像人类一样不断从经验中学习并持续提高其在现实世界中的效率和弹性,对于其广泛部署至关重要。该项目旨在利用神经生物学学习和大脑智能的原理和见解,开发用于机器人自主的新型计算算法。 这些成果可能会对制造和医疗保健应用中的 SDV、协作机器人和其他智能机器人系统等自主机器人产生多方面的变革性影响,这些机器人面临着计算/数据效率低下和适应不灵活的同样挑战。该项目旨在通过将受大脑启发的智能融入到其感知、规划和预测等基本和核心功能中,从而实现自主机器人系统的范式转变。 不断学习。该项目旨在利用融合工程科学方法,为自主机器人创建一个受大脑启发的感知、学习和规划算法的基本创新框架。通过理论和实证研究相结合,该框架将应用于 SDV 和 Cobots 作为两个具有代表性和互补性的工程系统。这项工作将整合类脑创新,将通用的类脑方法和算法调整和设计到 SDV 和协作机器人中,以通过实验验证数据和能源效率、适应性和弹性的有效性。 预计这些发现不仅将为 SDV 和协作机器人在现实世界的部署提供重大飞跃,而且还将通过提高数据/计算效率、适应弹性和智能可解释性,对其他智能机器人系统(例如制造和医疗保健领域的智能机器人系统)产生变革性影响。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和知识进行评估,被认为值得支持。 更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Junmin Wang其他文献

A physics-based time-varying transport delay oxygen concentration model for dual-loop exhaust gas recirculation (EGR) engine air-paths
双回路废气再循环 (EGR) 发动机气路的基于物理的时变传输延迟氧浓度模型
  • DOI:
    10.1016/j.apenergy.2014.03.076
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiangrui Zeng;Junmin Wang
  • 通讯作者:
    Junmin Wang
Investigation of optical inhomogeneity of MgO:PPLN crystals for frequency doubling of 1560 nm laser
用于 1560 nm 激光倍频的 MgO:PPLN 晶体光学不均匀性研究
  • DOI:
    10.1016/j.optcom.2014.04.008
  • 发表时间:
    2014-09
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Yulong Ge;Yashuai Han;Jun He;Junmin Wang
  • 通讯作者:
    Junmin Wang
Stability of Transmission Wave-Plate Equations with Local Indirect Damping
局部间接阻尼传输波片方程的稳定性
  • DOI:
    10.1007/s10440-022-00471-4
  • 发表时间:
    2022-02
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Yaping Guo;Junmin Wang;Dongxia Zhao
  • 通讯作者:
    Dongxia Zhao
Stabilization of the Cascaded ODE-Schrödinger Equations Subject to Observation With Time Delay
时滞观测级联 ODE-薛定谔方程的稳定性
Nonlinear observer designs for diesel engine selective catalytic reduction (SCR) ammonia coverage ratio estimation
用于柴油机选择性催化还原 (SCR) 氨覆盖率估算的非线性观测器设计

Junmin Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Junmin Wang', 18)}}的其他基金

Collaborative Research: CPS: Medium: Harmonious and Safe Coordination of Vehicles with Diverse Human / Machine Autonomy
合作研究:CPS:中:具有多样化人/机自主性的车辆的和谐与安全协调
  • 批准号:
    2312466
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
CPS: Synergy: Real-Time Cyber-Human-Vehicle Systems for Driving Safety Enhancement
CPS:协同:用于增强驾驶安全的实时网络人车系统
  • 批准号:
    1901632
  • 财政年份:
    2018
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
CPS: Synergy: Real-Time Cyber-Human-Vehicle Systems for Driving Safety Enhancement
CPS:协同:用于增强驾驶安全的实时网络人车系统
  • 批准号:
    1645657
  • 财政年份:
    2016
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
Making Global Capital Work: Economic Openness and Corporate Governance in Chinese Capital Markets
让全球资本发挥作用:中国资本市场的经济开放与公司治理
  • 批准号:
    1157909
  • 财政年份:
    2012
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
CAREER: Integrated Estimation and Control of Over-Actuated Lightweight Electric Vehicles for Sustainable and Safe Mobility
职业:过度驱动轻型电动汽车的综合估计和控制,实现可持续和安全的出行
  • 批准号:
    1149657
  • 财政年份:
    2012
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
Synergistically Integrated In-Cylinder Condition and Fueling Control for Advanced Multi-Mode Combustion Diesel Engines
先进多模式燃烧柴油发动机的协同集成缸内状态和燃油控制
  • 批准号:
    1029611
  • 财政年份:
    2010
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant

相似海外基金

Mobilizing brain health and dementia guidelines for practical information and a well trained workforce with cultural competencies - the BRAID Hub - Brain health Resources And Integrated Diversity Hub
动员大脑健康和痴呆症指南获取实用信息和训练有素、具有文化能力的劳动力 - BRAID 中心 - 大脑健康资源和综合多样性中心
  • 批准号:
    498289
  • 财政年份:
    2024
  • 资助金额:
    $ 200万
  • 项目类别:
    Operating Grants
Combinatorics of Total Positivity: Amplituhedra and Braid Varieties
总正性的组合:幅面体和辫子品种
  • 批准号:
    2349015
  • 财政年份:
    2024
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI BRAID: Efficient Learning of Spatiotemporal Regularities in Humans and Machines through Temporal Scaffolding
EFRI BRAID:通过时间支架有效学习人类和机器的时空规律
  • 批准号:
    2317706
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI BRAID: Fractional-order neuronal dynamics for next generation memcapacitive computing networks
EFRI BRAID:下一代记忆电容计算网络的分数阶神经元动力学
  • 批准号:
    2318139
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
Combinatorics and Braid Varieties
组合学和编织品种
  • 批准号:
    2246877
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI BRAID: Emulating Cerebellar Temporally Coherent Signaling for Ultraefficient Emergent Prediction
EFRI BRAID:模拟小脑时间相干信号以实现超高效紧急预测
  • 批准号:
    2317974
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI BRAID: Resilient autonomous navigation inspired by the insect central complex and sensorimotor control motifs
EFRI BRAID:受昆虫中枢复合体和感觉运动控制图案启发的弹性自主导航
  • 批准号:
    2318081
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI BRAID: Neuroscience Inspired Visual Analytics
EFRI BRAID:神经科学启发的视觉分析
  • 批准号:
    2318101
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI BRAID: Scalable-Learning Neuromorphics
EFRI BRAID:可扩展学习神经形态
  • 批准号:
    2318152
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
Braid groups via representation theory and machine learning
通过表示理论和机器学习编织辫子群
  • 批准号:
    DP230100654
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了