EFRI BRAID: Brain-inspired Algorithms for Autonomous Robots (BAAR)
EFRI BRAID:自主机器人的类脑算法 (BAAR)
基本信息
- 批准号:2318065
- 负责人:
- 金额:$ 200万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Autonomous robots, such as self-driving vehicles (SDVs) and household collaborative robots (Cobots), possess great potential to benefit society and meet several important national needs. Although artificial intelligence (AI) has made substantial progress, the current data/computational efficiency and adaptability of autonomous robots pale in comparison to humans in performing routine sensorimotor tasks such as driving and cooking. Enabling such autonomous robots to continually learn from experience and persistently improve their efficiency and resilience in the real world as humans do is imperative for their widespread deployments. This project aims to develop novel computational algorithms for robot autonomy with principles and insights of neurobiological learning and brain intelligence. The outcomes could make a multifaceted and transformative impact on autonomous robots such as SDVs, Cobots, and other intelligent robotic systems in manufacturing and healthcare applications that face the same challenges of computational/data inefficiency and adaptation inflexibility.The project seeks to provide a paradigm shift in autonomous robotic systems by incorporating brain-inspired intelligence throughout their fundamental and core capabilities of perception, planning, and continual learning. Using convergent engineering-science approaches, the project aims to create a fundamental and innovative framework of brain-inspired perception, learning, and planning algorithms for autonomous robots. The framework will be applied to SDVs and Cobots as two representative and complementary engineering systems through combined theoretical and empirical studies. Integrating brain-inspired innovations, the work will adapt and engineer the general brain-inspired methods and algorithms to SDVs and Cobots for experimental validation of the effectiveness in data- and energy-efficiency, adaptability, and resiliency. It is expected that the findings will not only provide a significant leap to SDVs and Cobots toward their real-world deployments, but also have a transformative impact on other intelligent robotic systems such as those in manufacturing and healthcare domains by improving their data/computation efficiency, adaptation resiliency, and intelligence interpretability.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
自动驾驶汽车(SDV)和家庭协作机器人(COBOTS)等自治机器人具有巨大的潜力,可以使社会受益并满足几种重要的国家需求。 尽管人工智能(AI)取得了长足的进步,但与人类在执行常规的感觉运动任务(例如驾驶和烹饪)方面相比,自主机器人的当前数据/计算效率和适应性苍白。 使这种自主机器人能够不断地从经验中学习,并像人类一样持续提高其在现实世界中的效率和韧性,这对于他们广泛的部署至关重要。该项目旨在开发新型的计算算法,以使用神经生物学学习和脑智力的原理和见解来开发机器人自主权。 结果可能会对自主机器人(例如SDV,协同机器人和其他智能机器人系统)在制造和医疗保健应用中的其他智能机器人系统产生多方面和变革性的影响,这些机器人系统面临着相同的计算/数据效率低下和适应性的挑战。持续学习。该项目使用融合工程科学方法,旨在为自动机器人的脑启发,学习和计划算法创建一个基本和创新的框架。该框架将通过合并的理论和经验研究将SDV和COBOTS应用于两个代表性和互补的工程系统。这项工作整合了大脑启发的创新,将适应和设计一般的脑启发方法和算法,以实现SDV和配备,以实验数据和能源效率,适应性和弹性的有效性。 可以预期,这些发现不仅将为SDV和配备朝着现实世界的部署提供重大飞跃,而且还会对其他智能机器人系统(例如制造业和医疗保健领域中的其他智能机器人系统)产生变革性的影响,通过提高数据/计算效率,适应能力和智力的解释能够提高其智力奖励。更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Junmin Wang其他文献
Hybrid Robust Air-Path Control for Diesel Engines Operating Conventional and Low Temperature Combustion Modes
- DOI:
10.1109/tcst.2008.917227 - 发表时间:
2008-03 - 期刊:
- 影响因子:4.8
- 作者:
Junmin Wang - 通讯作者:
Junmin Wang
Whole-cage randomization for animal studies with unequal cage or group sizes.
用于笼子或组大小不等的动物研究的全笼随机化。
- DOI:
10.1080/10543406.2023.2256834 - 发表时间:
2023 - 期刊:
- 影响因子:1.1
- 作者:
Tianhui Zhang;Benjamin Phillips;Natasha A Karp;Junmin Wang;S. Novick - 通讯作者:
S. Novick
Application of NMPC on optimization of ammonia coverage ratio references in two-can diesel SCR systems
NMPC在两罐柴油SCR系统氨覆盖率参考优化中的应用
- DOI:
10.1109/acc.2014.6859454 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Hui Zhang;Junmin Wang;Yue - 通讯作者:
Yue
Robust fault estimation for time-varying and high-order faults in vehicle electric steering systems
汽车电动转向系统时变和高阶故障的鲁棒故障估计
- DOI:
10.1109/cdc.2015.7402429 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Guoguang Zhang;Hui Zhang;Junmin Wang - 通讯作者:
Junmin Wang
ring-cavity-enhanced frequency doubling
环腔增强倍频
- DOI:
10.1364/ol.496990 - 发表时间:
2014 - 期刊:
- 影响因子:3.6
- 作者:
Yashuai Han;Xin Wen;Jiandong Bai;Baodong Yang;Yanhua Wang;Jun He;Junmin Wang - 通讯作者:
Junmin Wang
Junmin Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Junmin Wang', 18)}}的其他基金
Collaborative Research: CPS: Medium: Harmonious and Safe Coordination of Vehicles with Diverse Human / Machine Autonomy
合作研究:CPS:中:具有多样化人/机自主性的车辆的和谐与安全协调
- 批准号:
2312466 - 财政年份:2023
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
CPS: Synergy: Real-Time Cyber-Human-Vehicle Systems for Driving Safety Enhancement
CPS:协同:用于增强驾驶安全的实时网络人车系统
- 批准号:
1901632 - 财政年份:2018
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
CPS: Synergy: Real-Time Cyber-Human-Vehicle Systems for Driving Safety Enhancement
CPS:协同:用于增强驾驶安全的实时网络人车系统
- 批准号:
1645657 - 财政年份:2016
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
Making Global Capital Work: Economic Openness and Corporate Governance in Chinese Capital Markets
让全球资本发挥作用:中国资本市场的经济开放与公司治理
- 批准号:
1157909 - 财政年份:2012
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
CAREER: Integrated Estimation and Control of Over-Actuated Lightweight Electric Vehicles for Sustainable and Safe Mobility
职业:过度驱动轻型电动汽车的综合估计和控制,实现可持续和安全的出行
- 批准号:
1149657 - 财政年份:2012
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
Synergistically Integrated In-Cylinder Condition and Fueling Control for Advanced Multi-Mode Combustion Diesel Engines
先进多模式燃烧柴油发动机的协同集成缸内状态和燃油控制
- 批准号:
1029611 - 财政年份:2010
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
相似国自然基金
基于溶剂编织策略的新型非均相手性磷酸催化剂的设计、合成及其在轴手性3-芳基吲哚类化合物合成中的应用研究
- 批准号:22302048
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
偏轴静载下纤维编织网增强高延性水泥基复合材料破坏机理
- 批准号:52308260
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
三维编织碳纤维复合材料导电特性和大电流多重损伤机理
- 批准号:12372130
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
利用机械互锁和网格框架构建手性编织型共价有机框架的研究
- 批准号:22301147
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于射钉锚固的预应力碳纤维编织网增强混凝土复合板加固混凝土梁设计理论
- 批准号:52378299
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Mobilizing brain health and dementia guidelines for practical information and a well trained workforce with cultural competencies - the BRAID Hub - Brain health Resources And Integrated Diversity Hub
动员大脑健康和痴呆症指南获取实用信息和训练有素、具有文化能力的劳动力 - BRAID 中心 - 大脑健康资源和综合多样性中心
- 批准号:
498289 - 财政年份:2024
- 资助金额:
$ 200万 - 项目类别:
Operating Grants
Combinatorics of Total Positivity: Amplituhedra and Braid Varieties
总正性的组合:幅面体和辫子品种
- 批准号:
2349015 - 财政年份:2024
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI BRAID: Efficient Learning of Spatiotemporal Regularities in Humans and Machines through Temporal Scaffolding
EFRI BRAID:通过时间支架有效学习人类和机器的时空规律
- 批准号:
2317706 - 财政年份:2023
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI BRAID: Fractional-order neuronal dynamics for next generation memcapacitive computing networks
EFRI BRAID:下一代记忆电容计算网络的分数阶神经元动力学
- 批准号:
2318139 - 财政年份:2023
- 资助金额:
$ 200万 - 项目类别:
Standard Grant