CAREER: Thermomechanical Property Control of Confined Conjugated Polymeric Thin Films

职业:限域共轭聚合物薄膜的热机械性能控制

基本信息

  • 批准号:
    2047689
  • 负责人:
  • 金额:
    $ 59.35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-05-01 至 2026-04-30
  • 项目状态:
    未结题

项目摘要

This project is jointly funded by the Polymers Program in the Division of Materials Research and by the Established Program to Stimulate Competitive Research (EPSCoR).NON-TECHNICAL SUMMARYUnderstanding the dynamics of electronically active polymeric materials is crucial for the development of next-generation foldable and deformable electronic devices. It is also envisioned that in the near future implantable electronic devices could provide unique interfaces between the human body and emerging electronics, thus restoring lost human function, such as hearing, vision, and bodily movement. However, there are no established design roles to understand, control, and predict the softness and pliability of such new electronically active materials. This project aims to address this challenge by developing fundamental new knowledge on the dynamics of polymer macromolecules and thus provide a pathway to make ultra-soft electronics that can enable the next generation of soft electronic devices for future wearables and implants. The researchers at the University of Southern Mississippi will develop, test, and validate new electronically active polymers using special instrumentation and develop new models to predict and control their softness. The research will include development of design rules to achieve tunable control of the electronic and mechanical properties of semiconducting polymers by measuring, understanding, and manipulating their mechanical properties and molecular entanglement behavior.In addition to research involvement of graduate and undergraduate students, the educational effort of the project would implement an integrated and curiosity-driven virtual and in-person education platform on polymeric and optoelectronic materials to local K-12 students, including school districts comprising a majority of underrepresented students. Broader impacts will also include a focused Southern U.S. X-ray/neutron scattering workshop to bring new scientific techniques to the local scientific community.TECHNICAL SUMMARY Organic semiconductors based on conjugated polymers exhibit unique optoelectronic properties and have been widely applied in a broad range of applications for efficient lighting, health care, energy harvesting, and storage. Despite promising advances in their optoelectrical properties, the ability to predict and control thermomechanical properties is lagging behind. Thus, the overall goal of this project is to develop new design rules to achieve tunable control of the electronic and mechanical properties of conjugated polymers by measuring, understanding, and manipulating their glass transition temperature as well as their molecular entanglement behavior. Researchers at the University of Southern Mississippi will target the following goals: 1) accurately determine the glass transition temperature for conjugated polymers and its influence on the mechanical properties in both device-relevant thin-film confined states and bulk state; 2) illustrate the design rules for engineering highly entangled polymer chains to understand the role entangled semi-rigid chains have on final fracture behavior of free-standing thin films under confinement; and 3) understand the deformation mechanism of semi-rigid conjugated polymers using multimodal in-situ spectroscopy and scattering techniques, and thus guide the design of future deformable electronics. The fundamental knowledge gained through this project will lead to precise control of the thermomechanical properties of conjugated polymers, thus contributing to the development of future soft robotics, implantable health care, and robust energy harvesting devices..This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目由材料研究部的聚合物计划和刺激竞争力研究的既定计划(EPSCoR)共同资助。非技术总结了解电子活性聚合物材料的动力学对于下一代可折叠和可变形电子器件的开发至关重要。还可以设想,在不久的将来,可植入电子设备可以在人体和新兴电子设备之间提供独特的接口,从而恢复失去的人类功能,例如听觉、视觉和身体运动。 然而,没有既定的设计角色来理解,控制和预测这种新的电子活性材料的柔软性和柔韧性。该项目旨在通过开发有关聚合物大分子动力学的基础新知识来应对这一挑战,从而提供一种制造超软电子产品的途径,从而为未来的可穿戴设备和植入物提供下一代软电子设备。 南密西西比大学的研究人员将使用特殊仪器开发、测试和验证新的电子活性聚合物,并开发新的模型来预测和控制其柔软度。 该研究将包括开发设计规则,通过测量、理解和操纵半导体聚合物的机械性能和分子纠缠行为,实现对半导体聚合物的电子和机械性能的可调控制。除了研究生和本科生的研究参与外,该项目的教育工作将实施一个综合的和好奇心驱动的虚拟和该项目还为当地K-12学生提供聚合物和光电材料的个人教育平台,包括由大多数代表性不足的学生组成的学区。更广泛的影响还将包括一个重点关注美国南部的X射线/中子散射研讨会,为当地科学界带来新的科学技术。技术概要基于共轭聚合物的有机半导体具有独特的光电性能,已广泛应用于高效照明、医疗保健、能量收集和存储等广泛领域。尽管在光电性能方面取得了令人鼓舞的进展,但预测和控制热机械性能的能力仍然落后。因此,该项目的总体目标是开发新的设计规则,通过测量,理解和操纵它们的玻璃化转变温度以及它们的分子缠结行为来实现共轭聚合物的电子和机械性能的可调控制。南密西西比大学的研究人员将瞄准以下目标:1)准确确定共轭聚合物的玻璃化转变温度及其对器件相关薄膜受限态和体相态机械性能的影响; 2)说明工程高度缠结的聚合物链的设计规则,以理解缠结的半刚性链对约束下的独立薄膜的最终断裂行为的作用;和3)使用多模态原位光谱和散射技术理解半刚性共轭聚合物的变形机制,从而指导未来可变形电子器件的设计。 通过该项目获得的基础知识将导致共轭聚合物的热机械性能的精确控制,从而有助于未来软机器人,植入式医疗保健和强大的能量收集设备的发展。该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Backbone flexibility on conjugated polymer's crystallization behavior and thin film mechanical stability
  • DOI:
    10.1002/pol.20210462
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Zhiyuan Qian;Luke A. Galuska;Guorong Ma;W. McNutt;Song Zhang;Jianguo Mei;X. Gu
  • 通讯作者:
    Zhiyuan Qian;Luke A. Galuska;Guorong Ma;W. McNutt;Song Zhang;Jianguo Mei;X. Gu
Achieving High Performance Stretchable Conjugated Polymers via Donor Structure Engineering
通过供体结构工程实现高性能可拉伸共轭聚合物
  • DOI:
    10.1002/marc.202300169
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Wu, Ning;Huang, Gang;Huang, Hua;Wang, Yunfei;Gu, Xiaodan;Wang, Xiaohong;Qiu, Longzhen
  • 通讯作者:
    Qiu, Longzhen
Bioadhesive polymer semiconductors and transistors for intimate biointerfaces
  • DOI:
    10.1126/science.adg8758
  • 发表时间:
    2023-08-11
  • 期刊:
  • 影响因子:
    56.9
  • 作者:
    Li, Nan;Li, Yang;Wang, Sihong
  • 通讯作者:
    Wang, Sihong
Highly Deformable Rigid Glassy Conjugated Polymeric Thin Films
  • DOI:
    10.1002/adfm.202306576
  • 发表时间:
    2023-08
  • 期刊:
  • 影响因子:
    19
  • 作者:
    Yunfei Wang;Song Zhang;Guillaume Freychet;Zhaofan Li;Kai‐Lin Chen;Chih-Ting Liu;Zhiqiang Cao;Y. Chiu;W. Xia;X. Gu
  • 通讯作者:
    Yunfei Wang;Song Zhang;Guillaume Freychet;Zhaofan Li;Kai‐Lin Chen;Chih-Ting Liu;Zhiqiang Cao;Y. Chiu;W. Xia;X. Gu
Molecular Origin of Strain‐Induced Chain Alignment in PDPP‐Based Semiconducting Polymeric Thin Films
  • DOI:
    10.1002/adfm.202100161
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    19
  • 作者:
    Song Zhang;Amirhadi Alesadi;Gage T. Mason;Kai‐Lin Chen;Guillaume Freychet;Luke A. Galuska;Yu‐Hsuan Cheng;P. B. J. St. Onge;Michael U. Ocheje;Guorong Ma;Zhiyuan Qian;Sujata Dhakal;Zachary Ahmad;Cheng Wang;Yu‐Cheng Chiu;S. Rondeau‐Gagné;W. Xia;X. Gu
  • 通讯作者:
    Song Zhang;Amirhadi Alesadi;Gage T. Mason;Kai‐Lin Chen;Guillaume Freychet;Luke A. Galuska;Yu‐Hsuan Cheng;P. B. J. St. Onge;Michael U. Ocheje;Guorong Ma;Zhiyuan Qian;Sujata Dhakal;Zachary Ahmad;Cheng Wang;Yu‐Cheng Chiu;S. Rondeau‐Gagné;W. Xia;X. Gu
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaodan Gu其他文献

A Novel IM Sync Message-Based Cross-Device Tracking
一种新颖的基于 IM 同步消息的跨设备跟踪
Mediating morphology evolution via the regulation of molecular interactions between volatile solid additives and electron acceptor to enable organic solar cells with 19.20% efficiency
  • DOI:
    10.1016/j.cej.2024.158635
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ruiying Lin;Zhenyu Luo;Yunfei Wang;Jiaxin Wu;Tao Jia;Wei Zhang;Xiaodan Gu;Yi Liu;Liangang Xiao;Yonggang Min
  • 通讯作者:
    Yonggang Min
Intermolecular-force-driven anisotropy breaks the thermoelectric trade-off in n-type conjugated polymers
分子间力驱动的各向异性打破了 n 型共轭聚合物中的热电权衡
  • DOI:
    10.1038/s41563-025-02207-9
  • 发表时间:
    2025-04-28
  • 期刊:
  • 影响因子:
    38.500
  • 作者:
    Diego Rosas Villalva;Dennis Derewjanko;Yongcao Zhang;Ye Liu;Andrew Bates;Anirudh Sharma;Jianhua Han;Martí Gibert-Roca;Osnat Zapata Arteaga;Soyeong Jang;Stefania Moro;Giovanni Costantini;Xiaodan Gu;Martijn Kemerink;Derya Baran
  • 通讯作者:
    Derya Baran
Loving-kindness and compassion meditations in the workplace: A meta-analysis and future prospects.
工作场所的慈悲冥想:荟萃分析和未来前景。
How Might Mindfulness-Based Interventions Reduce Job Burnout? Testing a Potential Self-regulation Model with a Randomized Controlled Trial
基于正念的干预措施如何减少工作倦怠?
  • DOI:
    10.1007/s12671-022-01927-2
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Yuan Zheng;Xiaodan Gu;Mingyan Jiang;Xianglong Zeng
  • 通讯作者:
    Xianglong Zeng

Xiaodan Gu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaodan Gu', 18)}}的其他基金

RII Track-4: NSF: Obtaining Data Science Expertise to Enable Rapid Data Driven Material Discovery
RII Track-4:NSF:获得数据科学专业知识以实现快速数据驱动的材料发现
  • 批准号:
    2229686
  • 财政年份:
    2023
  • 资助金额:
    $ 59.35万
  • 项目类别:
    Standard Grant
Collaborative Research: Syntheses and Solution-Phase Properties of Rigid Conjugated Ladder Polymer Chains
合作研究:刚性共轭梯形聚合物链的合成和溶液相性质
  • 批准号:
    2304969
  • 财政年份:
    2023
  • 资助金额:
    $ 59.35万
  • 项目类别:
    Standard Grant
Collaborative Research: Synthesis and Rigidity Quantification of Ladder Polymers with Controlled Structural Defects
合作研究:具有受控结构缺陷的梯形聚合物的合成和刚性定量
  • 批准号:
    2004133
  • 财政年份:
    2020
  • 资助金额:
    $ 59.35万
  • 项目类别:
    Standard Grant

相似海外基金

Investigation on the Sub-structure development in HSA6 alloys to maximise strength via Thermomechanical simulations
通过热机械模拟研究 HSA6 合金的子结构开发以最大限度地提高强度
  • 批准号:
    2901174
  • 财政年份:
    2024
  • 资助金额:
    $ 59.35万
  • 项目类别:
    Studentship
DMREF: Accelerating the Design of Adhesives with Nanoscale Control of Thermomechanical Properties
DMREF:通过热机械性能的纳米级控制加速粘合剂的设计
  • 批准号:
    2323317
  • 财政年份:
    2023
  • 资助金额:
    $ 59.35万
  • 项目类别:
    Continuing Grant
CAREER: Fundamental investigation of twin boundary engineering through cyclic cross-phase-boundary thermomechanical processing
职业:通过循环跨相边界热机械加工对孪晶边界工程进行基础研究
  • 批准号:
    2240125
  • 财政年份:
    2023
  • 资助金额:
    $ 59.35万
  • 项目类别:
    Continuing Grant
thermomechanical material testing machine
材料热机械试验机
  • 批准号:
    468811222
  • 财政年份:
    2022
  • 资助金额:
    $ 59.35万
  • 项目类别:
    Major Research Instrumentation
OPEn HPC theRmomechanical tools for the development of eAtf fuels (OPERA)
用于开发 eAtf 燃料的 OPEn HPC 热机械工具 (OPERA)
  • 批准号:
    10066645
  • 财政年份:
    2022
  • 资助金额:
    $ 59.35万
  • 项目类别:
    EU-Funded
Durability and thermomechanical performance evaluation of lightweight reinforced thermoplastic composites
轻质增强热塑性复合材料的耐久性和热机械性能评估
  • 批准号:
    568487-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 59.35万
  • 项目类别:
    Alliance Grants
ERI: Understanding the Thermomechanical Response of Sandwich Structures with Triply Periodic Minimal Surface
ERI:了解具有三周期最小表面的夹层结构的热机械响应
  • 批准号:
    2138459
  • 财政年份:
    2022
  • 资助金额:
    $ 59.35万
  • 项目类别:
    Standard Grant
OPEn HPC theRmomechanical tools for the development of eAtf fuels
用于开发 eAtf 燃料的 OPEn HPC 热机械工具
  • 批准号:
    10072209
  • 财政年份:
    2022
  • 资助金额:
    $ 59.35万
  • 项目类别:
    EU-Funded
CAREER: Thermomechanical Response and Fatigue Performance of Surface Layers Engineered by Finish Machining: In-situ Characterization and Digital Process Twin
职业:精加工表面层的热机械响应和疲劳性能:原位表征和数字工艺孪生
  • 批准号:
    2143806
  • 财政年份:
    2022
  • 资助金额:
    $ 59.35万
  • 项目类别:
    Standard Grant
Manufacture process on high-strength and ultrafine-grained pure titanium by single-pass heavy-strain thermomechanical treatment
单道次高应变形变热处理高强度超细晶纯钛制造工艺
  • 批准号:
    22K04762
  • 财政年份:
    2022
  • 资助金额:
    $ 59.35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了