CAREER: Optomechanical Sensors Leveraging Quantum Noise

职业:利用量子噪声的光机械传感器

基本信息

  • 批准号:
    2047823
  • 负责人:
  • 金额:
    $ 47.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-15 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

Mechanical sensors with unprecedented sensitivity will provide a means to look for extremely tiny forces that are undetectable by current methods. Such small signals can arise from cosmological origins, such as certain hypothetical types of dark matter which must exist in great abundance to hold our galaxy together but cannot be seen directly with normal astronomical observation. Another source as-of-yet undetected signals is from proposed effects which act to spoil exotic quantum mechanical behaviors such as an object existing simultaneously in two places at once. Observing or putting limits on the existence of either of these signals will add to the fundamental understanding of the nature of our universe. At much smaller scales, ultrasensitive mechanical detectors could feel the magnetic forces from individual atoms and nuclei, performing nanoscale magnetic resonance imaging (MRI) for biologically important molecules or semiconductor electronic devices that cannot be imaged via conventional techniques. As mechanical sensors are devised with lower and lower noise, devices are running up against fundamental quantum noise limits. This project will develop methods to side-step these quantum limits and improve searches for small mechanical signals representing new physical phenomena. To this end, ultralow noise mechanical sensors with new optical probing techniques will be developed to enhance measurement sensitivity in the face of quantum noise. This project will also provide educational research training for undergraduate students, preparing the next generation of scientists and engineers to tackle real-world problems. Students will take a real open-ended research project in optical and mechanical sensors from concept and design all the way through fabrication and testing in rapid enough succession to allow for multiple iterations facilitated by modern computer-aided design, simulation, and manufacturing tools.Understanding quantum noise limits in optically probed mechanical systems goes back to the advent of quantum mechanics, with Heisenberg’s microscope thought experiment illustrating a fundamental trade-off between position sensitivity and backaction (i.e. random momentum kicks from recoiling photons obscuring the motion of an object being observed with light). Many methods to evade the deleterious effects of this quantum backaction have been proposed, most of which require complex optical or mechanical configurations with demanding constraints on classical noise, loss, and stability. Here, the goal is to demonstrate a similar quantum advantage in a much simpler and ubiquitous precision optical measurement technique – the optical lever, measuring the angular deviation of light reflecting off a tilting surface. Simple modifications to the standard setup yield an increase in the quantum information from the measurement and a reduction in the sensitivity to backaction-induced motion that would otherwise mask small signals. This technique will be applied to ultralow mechanical dissipation, high-tension vibrating string mechanical resonators that can be functionalized for sensing strain, gravity, and magnetic fields beyond standard quantum limits. Further, this string optomechanical sensor will be anchored to a macroscopic test mass and the quantum limits of measuring strain induced by test mass motion will be investigated. Measurements of this system will put meaningful constraints on beyond-standard-model interactions including exotic quantum decoherence models and ultralight scalar dark matter. In the longer term, the techniques developed here will find applications in the quantum-enhanced detection of gravitational waves, nanoscale force microscopy, and in mechanically mediated storage and transduction of quantum states for quantum information processing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机械传感器具有前所未有的灵敏度,将提供一种方法来寻找目前方法无法检测到的极其微小的力。这样的小信号可能来自宇宙学的起源,例如某些假设类型的暗物质,它们必须大量存在才能将我们的银河系保持在一起,但用正常的天文观测无法直接看到。另一个尚未检测到的信号来源是提出的效应,这些效应破坏了奇异的量子力学行为,例如一个物体同时存在于两个地方。观察或限制这些信号的存在,将有助于从根本上理解我们宇宙的本质。在更小的范围内,超灵敏的机械探测器可以感受到来自单个原子和原子核的磁力,对具有生物重要性的分子或半导体电子设备执行纳米级磁共振成像(MRI),而这些分子或半导体电子设备无法通过传统技术进行成像。随着机械传感器的设计具有越来越低的噪声,设备正在达到基本的量子噪声极限。该项目将开发避开这些量子限制的方法,并改进对代表新物理现象的小机械信号的搜索。为此,将开发具有新的光学探测技术的超低噪声机械传感器,以提高面对量子噪声的测量灵敏度。该项目还将为本科生提供教育研究培训,为解决现实世界的问题培养下一代科学家和工程师。学生们将在光学和机械传感器中进行一个真正的开放式研究项目,从概念和设计到制造和测试,以足够快的速度连续进行,以便在现代计算机辅助设计、模拟和制造工具的帮助下进行多次迭代。理解光学探测机械系统中的量子噪声限制可以追溯到量子力学的出现,海森伯格的显微镜思维实验说明了位置敏感度和反作用力之间的基本权衡(即,来自后冲光子的随机动量踢使用光观察到的对象的运动变得模糊)。已经提出了许多方法来避免这种量子反向作用的有害影响,其中大多数方法需要复杂的光学或机械配置,对经典噪声、损耗和稳定性具有严格的约束。这里的目标是在一种更简单、更普遍的精密光学测量技术中展示类似的量子优势--光学杠杆,测量从倾斜表面反射的光的角度偏差。对标准设置的简单修改会增加测量的量子信息,并降低对反作用力引起的运动的敏感度,否则会掩盖小信号。这项技术将被应用于超低机械耗散、高压振动弦机械谐振器,这些机械谐振器可以功能化,以传感超出标准量子极限的应变、重力和磁场。此外,这种弦式光机传感器将锚定在宏观测试质量上,并将研究测试质量运动引起的测量应变的量子极限。对这个系统的测量将对超标准模型相互作用施加有意义的限制,包括奇异的量子退相干模型和超轻标量暗物质。从长远来看,这里开发的技术将应用于引力波的量子增强检测、纳米尺度的力显微镜,以及用于量子信息处理的量子态的机械中介存储和传输。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Purdy其他文献

Connecting microwave and optical frequencies with a vibrational degree of freedom
连接微波和光频率与振动自由度
Bright squeezed light reduces back-action
  • DOI:
    10.1038/s41566-019-0569-1
  • 发表时间:
    2020-01
  • 期刊:
  • 影响因子:
    35
  • 作者:
    Thomas Purdy
  • 通讯作者:
    Thomas Purdy

Thomas Purdy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Compact Optomechanical Seismic Sensors for LIGO
用于 LIGO 的紧凑型光机地震传感器
  • 批准号:
    2426360
  • 财政年份:
    2024
  • 资助金额:
    $ 47.95万
  • 项目类别:
    Standard Grant
Highly efficient quantum conversion optomechanical systems for quantum networks
用于量子网络的高效量子转换光机械系统
  • 批准号:
    23KF0203
  • 财政年份:
    2023
  • 资助金额:
    $ 47.95万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Highly efficient quantum conversion optomechanical systems for quantum networks
用于量子网络的高效量子转换光机械系统
  • 批准号:
    23K19196
  • 财政年份:
    2023
  • 资助金额:
    $ 47.95万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Novel optomechanical entanglement
新型光机纠缠
  • 批准号:
    23KF0087
  • 财政年份:
    2023
  • 资助金额:
    $ 47.95万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Correlative optomechanical microscope
相关光机显微镜
  • 批准号:
    521330785
  • 财政年份:
    2023
  • 资助金额:
    $ 47.95万
  • 项目类别:
    Major Research Instrumentation
Superconducting Electro-Optomechanical Photon Converter
超导电光机械光子转换器
  • 批准号:
    RGPIN-2020-04537
  • 财政年份:
    2022
  • 资助金额:
    $ 47.95万
  • 项目类别:
    Discovery Grants Program - Individual
Like a candle in the wind: flicker noise in nano-optomechanical systems
就像风中的蜡烛:纳米光机械系统中的闪烁噪声
  • 批准号:
    RGPIN-2020-05978
  • 财政年份:
    2022
  • 资助金额:
    $ 47.95万
  • 项目类别:
    Discovery Grants Program - Individual
Optomechanical generation of non-classical states and exploration of gravitational decoherence mechanisms
非经典态的光机械生成及引力退相干机制的探索
  • 批准号:
    567689-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 47.95万
  • 项目类别:
    Postdoctoral Fellowships
PM: Optomechanical Dark Matter Detectors
PM:光机械暗物质探测器
  • 批准号:
    2209473
  • 财政年份:
    2022
  • 资助金额:
    $ 47.95万
  • 项目类别:
    Standard Grant
Compact Optomechanical Seismic Sensors for LIGO
用于 LIGO 的紧凑型光机地震传感器
  • 批准号:
    2207794
  • 财政年份:
    2022
  • 资助金额:
    $ 47.95万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了