CAREER: Electro-optic Multiplexing for Massive Scaling of Neural Recording
职业:用于大规模神经记录缩放的电光复用
基本信息
- 批准号:2048012
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Our perception of the outside world, cognition, and memory are all mediated through our brain. It is not yet completely known how processing in the brain gives rise to the richness of our experience. To understand how the activity of neurons contributes to the transformation of information in the brain, it is important to record neural signals across different areas of the brain with high resolution. One of the widely used tools to record neuronal activity is a needle-shaped implantable device, called neural probe that penetrates through the tissue and has multiple recording sites to capture the activity of different neurons in the brain. Given the complexity of brain, the number of recording channels on the neural probe should be increased so that more signals can be captured from the central nervous system. However, this comes at the cost of enlarging the implantable probe, causing severe damage to the brain tissue. In this project, the researchers aim to break this trade-off by designing a completely new class of ultrahigh density neural probes but with a very slim form factor to unravel the neural basis of brain function. This will be enabled by using light to carry the recorded signals from the brain. This novel scalable technology offers a unique approach for high-density neural recording that can revolutionize the design of next generation brain-machine interfaces and also new therapeutics for mitigating brain disorders such as epilepsy, Parkinson’s and Alzheimer’s disease. This project provides a unique training opportunity for a new generation of students in the interdisciplinary field of neural engineering at the interface of nanotechnology, photonics, electronics and neuroscience.The technical goal of this integrative research project is to design a novel ultrahigh density neural interface platform by directly recording the electrophysiology activity in the brain and encoding it into different optical wavelengths using the exquisite electro-optic properties of graphene. The optical signals will then be densely multiplexed using on-chip silicon photonic microresonators. This method will massively scale up the number of neurons which can be simultaneously recorded and will provide unprecedented sensitivity and signal fidelity. This multidisciplinary research builds on a host of technological breakthroughs to leverage (i) the exceptional electro-optic properties of graphene for encoding electrophysiology signals onto optical signals and (ii) the narrowband resonance of high-quality photonic microresonators for on-chip wavelength-domain multiplexing of many recorded neural signals. The proposed method enables simultaneous electro-optic neural recording from thousands of neurons without the need for any exogenous optical tags.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
我们对外部世界的感知、认知和记忆都是通过我们的大脑来调节的。我们还不完全知道大脑的处理过程是如何带来丰富的体验的。为了了解神经元的活动如何有助于大脑中的信息转换,以高分辨率记录大脑不同区域的神经信号非常重要。被广泛使用的记录神经元活动的工具之一是一种针状的可植入设备,称为神经探测器,它穿透组织,有多个记录位置来捕捉大脑中不同神经元的活动。鉴于大脑的复杂性,神经探头上的记录通道应该增加,以便从中枢神经系统捕获更多的信号。然而,这是以扩大可植入探头的成本为代价的,这会对脑组织造成严重损害。在这个项目中,研究人员的目标是打破这种取舍,设计一种全新的超高密度神经探针,但具有非常薄的形状因素,以揭示大脑功能的神经基础。这将通过使用光从大脑携带记录的信号来实现。这项新颖的可扩展技术为高密度神经记录提供了一种独特的方法,可以彻底改变下一代脑机接口的设计,并为缓解癫痫、帕金森和阿尔茨海默病等大脑疾病提供新的疗法。该项目在纳米技术、光子学、电子学和神经科学的交叉领域为新一代神经工程领域的学生提供了一个独特的培训机会。该综合研究项目的技术目标是设计一种新型的超高密度神经接口平台,通过直接记录大脑中的电生理活动,并利用石墨烯的精致电光特性将其编码成不同的光学波长。然后,光信号将使用片上硅光子微谐振器进行密集多路复用。这种方法将大规模增加可同时记录的神经元的数量,并将提供前所未有的灵敏度和信号保真度。这项多学科研究建立在一系列技术突破的基础上,以利用(I)石墨烯的特殊电光特性将电生理信号编码为光信号,以及(Ii)高质量光子微谐振器的窄带共振,用于对许多记录的神经信号进行片上波长域多路复用。建议的方法能够从数千个神经元同时进行电光神经记录,而不需要任何外部光学标签。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maysamreza Chamanzar其他文献
Reply to: The overwhelming role of ballistic photons in ultrasonically guided light through tissue
回复:弹道光子在超声引导光穿过组织中的压倒性作用
- DOI:
10.1038/s41467-022-29095-w - 发表时间:
2022-04-06 - 期刊:
- 影响因子:15.700
- 作者:
Maysamreza Chamanzar;Matteo Giuseppe Scopelliti;Adithya Pediredla;Hengji Huang;Srinivasa G. Narasimhan;Ioannis Gkioulekas;Mohammad-Reza Alam;Michel M. Maharbiz - 通讯作者:
Michel M. Maharbiz
Maysamreza Chamanzar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maysamreza Chamanzar', 18)}}的其他基金
NSF Convergence Accelerator Track M: Distributed Flexible Strain Sensors to Enable Proprioceptive Cochlear Implant Electrodes
NSF 融合加速器轨道 M:分布式柔性应变传感器支持本体感受耳蜗植入电极
- 批准号:
2344394 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Biocompatible Flexible Microfabricated Sensors for Surgical Applications
适用于外科应用的生物相容性柔性微加工传感器
- 批准号:
2321238 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Novel Electronic-Photonic Silicon Carbide Probes for Neural Recording and Stimulation
合作研究:用于神经记录和刺激的新型电子光子碳化硅探针
- 批准号:
2211969 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
High throughput wavelength-multiplexed electro-opto-mechanic neural probes
高通量波长复用电光机械神经探针
- 批准号:
2111660 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
In-situ Ultrasonically Sculpted Virtual Light Paths for Steerable Neural Imaging and Stimulation
用于可操纵神经成像和刺激的原位超声雕刻虚拟光路
- 批准号:
1935849 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
NCS-FO:Collab:Multimodal sampling of neural ensembles: A high-density opto-electro-chemical neural interface for simultaneous electrical recording and optical imaging of cell-types
NCS-FO:协作:神经集合的多模态采样:高密度光电化学神经接口,用于同时对细胞类型进行电记录和光学成像
- 批准号:
1926804 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
蒽醌/石墨烯纳米复合材料电极的电催化氧还原性能及其在异相electro-Fenton-like体系中的应用研究
- 批准号:21177017
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: DESC: Type II: Multi-Function Cross-Layer Electro-Optic Fabrics for Reliable and Sustainable Computing Systems
合作研究:DESC:II 型:用于可靠和可持续计算系统的多功能跨层电光织物
- 批准号:
2324644 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: DESC: Type II: Multi-Function Cross-Layer Electro-Optic Fabrics for Reliable and Sustainable Computing Systems
合作研究:DESC:II 型:用于可靠和可持续计算系统的多功能跨层电光织物
- 批准号:
2324645 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Development of Electro-Optic Beam Position Monitors for the High Luminosity Large Hadron Collider
高光度大型强子对撞机电光束位置监测仪的研制
- 批准号:
2755645 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Studentship
Development of Electro-Optic Beam Position Monitors for the High Luminosity Large Hadron Collider
高光度大型强子对撞机电光束位置监测仪的研制
- 批准号:
2782220 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Studentship
STTR Phase I: Robust High-Performance Organic Electro-Optic Materials
STTR 第一阶段:稳健的高性能有机电光材料
- 批准号:
2036514 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Study of electron longitudinal phase space in laser wakefield acceleration via electro-optic streaking technique
电光拖尾技术激光尾场加速中电子纵向相空间研究
- 批准号:
21K17998 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: An Agile Electro-Optic Frequency Comb for Precision Near-Infrared Radial Velocity Spectroscopy with the Habitable Zone Planet Finder
合作研究:用于精确近红外径向速度光谱的敏捷电光频率梳与宜居带行星探测器
- 批准号:
2009554 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Collaborative Research: An Agile Electro-Optic Frequency Comb for Precision Near-Infrared Radial Velocity Spectroscopy with the Habitable Zone Planet Finder
合作研究:用于精确近红外径向速度光谱的敏捷电光频率梳与宜居带行星探测器
- 批准号:
2009889 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Quantum Electro-Optic Detector Technology (QuEOD)
量子电光探测器技术(QuEOD)
- 批准号:
50765 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
CR&D Bilateral














{{item.name}}会员




