CAREER: Enabling Highly-Mobile Large-Scale MIMO Systems with Machine Learning

职业:通过机器学习实现高度移动的大规模 MIMO 系统

基本信息

  • 批准号:
    2048021
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-04-01 至 2026-03-31
  • 项目状态:
    未结题

项目摘要

Building efficient communication networks that can enable the emerging wireless applications is a national priority for the United States and many other countries around the world. Future wireless communication networks will be required to provide significantly higher data rates compared to the current networks and to support highly-mobile low-latency applications such as virtual/augmented reality and autonomous vehicles. To respond to these requirements, this project will leverage machine learning to design next-generation wireless communication systems that can efficiently increase the number of antennas at the transmitters and receivers, which is essential for supporting high data rates. This project will also make use of the other sensory information such as GPS positions and camera images to improve the performance of the wireless communication networks. On the educational front, this project will lead to the development of undergraduate and graduate course materials and will provide opportunities for enhancing the basic engineering skills of undergraduate students through engaging them into building proof-of-concept prototypes. Further, the proposed work in this project is expected to have impact on a number of areas through the technology transfer to industry and the public release of all the machine learning datasets and algorithmic implementations developed during the project.The main goal of this project is to enable highly-mobile large-scale MIMO systems in realistic dynamic environments. To achieve this goal, fundamentally new machine learning approaches that are capable of efficiently leveraging the prior system observations and the side multi-modal sensory information will be developed. The project has several inter-related thrusts: (i) Developing statistical channel prediction approaches for fast yet robust channel acquisition in dynamic massive MIMO systems; (ii) characterizing the fundamental conditions under which across-frequency and across-space channel prediction is feasible; (iii) Designing robust and adaptive multi-user precoding for highly-mobile massive MIMO systems leveraging learning-based conditional channel covariance prediction; (iv) Developing a novel multi-modal learning framework for fast mmWave beam prediction in line-of-sight and non-line-of-sight scenarios, relying on the efficient fusion of various sensory data, such as positions, sub-6GHz channels, and visual data; (v) Investigating the design of efficient multi-modal learning approaches and algorithms for dynamic mmWave blockage prediction using advanced visual scene understanding and end-to-end learning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
建立能够支持新兴无线应用的高效通信网络是美国和世界上许多其他国家的国家优先事项。未来的无线通信网络将需要提供比当前网络更高的数据速率,并支持高移动性的低延迟应用,如虚拟/增强现实和自动驾驶汽车。为了满足这些要求,该项目将利用机器学习来设计下一代无线通信系统,该系统可以有效地增加发射机和接收机的天线数量,这对于支持高数据速率至关重要。该项目还将利用GPS位置和摄像机图像等其他感官信息来提高无线通信网络的性能。在教育方面,该项目将导致本科生和研究生课程材料的开发,并将通过让本科生参与构建概念验证原型,为提高本科生的基本工程技能提供机会。此外,该项目中的拟议工作预计将通过向工业界转让技术以及公开发布项目期间开发的所有机器学习数据集和算法实现,对多个领域产生影响。该项目的主要目标是在现实动态环境中实现高移动性的大规模MIMO系统。为了实现这一目标,将开发能够有效利用先前系统观察和侧多模态感觉信息的全新机器学习方法。该项目有几个相互关联的目标:(i)开发统计信道预测方法,用于动态大规模MIMO系统中快速而稳健的信道捕获;(ii)表征跨频率和跨空间信道预测可行的基本条件;(iii)利用基于学习的条件信道协方差预测,为高度移动的大规模MIMO系统设计稳健和自适应的多用户预编码;(iv)开发一种新的多模式学习框架,用于视线和非视线场景中的快速毫米波波束预测,依赖于各种传感数据的有效融合,例如位置、6 GHz以下信道和视觉数据;(v)研究设计有效的多模态学习方法和算法,用于使用先进的视觉场景理解和端到端技术进行动态毫米波阻塞预测。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
LiDAR Aided Future Beam Prediction in Real-World Millimeter Wave V2I Communications
LiDAR 辅助现实世界毫米波 V2I 通信中的未来波束预测
  • DOI:
    10.1109/lwc.2022.3219409
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6.3
  • 作者:
    Jiang, Shuaifeng;Charan, Gouranga;Alkhateeb, Ahmed
  • 通讯作者:
    Alkhateeb, Ahmed
LiDAR-Aided Mobile Blockage Prediction in Real-World Millimeter Wave Systems
Proactively Predicting Dynamic 6G Link Blockages Using LiDAR and In-Band Signatures
Radar Aided Proactive Blockage Prediction in Real-World Millimeter Wave Systems
现实世界毫米波系统中的雷达辅助主动阻塞预测
Computer Vision Aided Blockage Prediction in Real-World Millimeter Wave Deployments
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ahmed Alkhateeb其他文献

Outpatient management of pediatric acute mastoiditis
  • DOI:
    10.1016/j.ijporl.2017.09.008
  • 发表时间:
    2017-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ahmed Alkhateeb;Francis Morin;Haya Aziz;Mayuri Manogaran;William Guertin;Melanie Duval
  • 通讯作者:
    Melanie Duval
Zone-Specific CSI Feedback for Massive MIMO: A Situation-Aware Deep Learning Approach
大规模 MIMO 的区域特定 CSI 反馈:一种态势感知深度学习方法
  • DOI:
    10.48550/arxiv.2401.07451
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yu Zhang;Ahmed Alkhateeb
  • 通讯作者:
    Ahmed Alkhateeb
Integrated Imaging and Communication with Reconfigurable Intelligent Surfaces
与可重构智能表面集成成像和通信
International Pediatric Otolaryngology Group (IPOG) consensus recommendations: Management of suprastomal collapse in the pediatric population
  • DOI:
    10.1016/j.ijporl.2020.110427
  • 发表时间:
    2020-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jaime Doody;Ahmed Alkhateeb;Karthik Balakrishnan;Joshua Bedwell;John Carter;Sukgi S. Choi;Alan T. Cheng;Sam J. Daniel;John Dahl;Alessandro De Alarcon;Pierre Fayoux;Catherine K. Hart;Christopher Hartnick;Nico Jonas;Michael Kuo;Nikki Mills;Harlan Muntz;Richard Nicollas;Seth Pransky;Roger Nuss
  • 通讯作者:
    Roger Nuss
Implementation of Real-Time Adversarial Attacks on DNN-based Modulation Classifier
基于 DNN 的调制分类器的实时对抗攻击的实现

Ahmed Alkhateeb的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ahmed Alkhateeb', 18)}}的其他基金

Collaborative Research: SpecEES: Towards Energy and Spectrally Efficient Millimeter Wave MIMO Platforms - A Unified System, Circuits, and Machine Learning Framework
合作研究:SpecEES:迈向能源和频谱高效的毫米波 MIMO 平台 - 统一的系统、电路和机器学习框架
  • 批准号:
    1923676
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Bug Tolerant Networking: Enabling Highly-Available Network Infrastructures through Semantic Transformations.
职业:容错网络:通过语义转换实现高可用性的网络基础设施。
  • 批准号:
    2326509
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
HILIGHT: Highly Integrated Versatile Laser Source enabling two-photon excitation in digital diagnostics and biomedical research
亮点:高度集成的多功能激光源可在数字诊断和生物医学研究中实现双光子激发
  • 批准号:
    10107542
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    EU-Funded
Enabling a highly-scalable, cloud-based microservices architecture
实现高度可扩展、基于云的微服务架构
  • 批准号:
    513199-2017
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Collaborative Research and Development Grants
Enabling simple and highly secure authentication from printed polymer materials
通过印刷聚合物材料实现简单且高度安全的身份验证
  • 批准号:
    83414
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Collaborative R&D
A construction of new biosensor technology enabling highly sensitive detection of alpha-synuclein fibril originated from Parkinson's disease patient
构建新型生物传感器技术,能够高度灵敏地检测帕金森病患者体内的α-突触核蛋白原纤维
  • 批准号:
    19K22964
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Enabling a highly-scalable, cloud-based microservices architecture
实现高度可扩展、基于云的微服务架构
  • 批准号:
    513199-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Collaborative Research and Development Grants
Conversational Artifical Intelligence - a unique real-time voice analytics technology providing highly accurate behavioural determinations - scalably enabling the identification of fraud in insurance claims
会话人工智能 - 一种独特的实时语音分析技术,可提供高度准确的行为确定 - 可扩展地识别保险索赔中的欺诈行为
  • 批准号:
    104997
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Feasibility Studies
Highly Polarized Olefins: Enabling Polymerization Catalysts for Homo- and Copolymers Based on “Non-Polymerizable” gamma-Butyrolactone
高度极化的烯烃:基于“不可聚合”γ-丁内酯的均聚物和共聚物的聚合催化剂
  • 批准号:
    411719654
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grants
MRI: Development of Enodia: A Highly Reconfigurable, HPC-Backed Instrument Enabling Multifaceted Interactive Visualization
MRI:Enodia 的开发:一种高度可重构、HPC 支持的仪器,可实现多方面的交互式可视化
  • 批准号:
    1828611
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Bug Tolerant Networking: Enabling Highly-Available Network Infrastructures through Semantic Transformations.
职业:容错网络:通过语义转换实现高可用性的网络基础设施。
  • 批准号:
    1749785
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了