CAREER: Exact Optimal and Data-Adaptive Algorithms and Tools for Differential Privacy
职业:用于差异隐私的精确最优和数据自适应算法和工具
基本信息
- 批准号:2048091
- 负责人:
- 金额:$ 49.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-15 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project is motivated by the increasing public concerns on privacy issues, new legislations and the high demand for privacy enhancing technologies such as differential privacy (DP) in applications from both private and public sectors. The overarching theme of the project is to address the pressing new challenges that arise as differential privacy transforms from a theoretical construct into a practical technology. The project advances the state-of-the-art of research in the area of DP, and contributes to privacy education. On the research front, the project develops new algorithms and analytical tools that enable more precise privacy accounting and higher utility in DP. On the education front, the project involves training future leaders in DP areas, creating educational materials and expanding an open-source software library called autodp that makes state-of-the-art differentially private computation more accessible. Collectively, the integrated research and educational activities contribute to ongoing collaborative efforts in building innovative applications of differential privacy. The project has three main components in use-inspired fundamental research. The first component unifies the recent breakthroughs in DP, such as, Renyi DP, moments accountant, f-DP and produce an intermediate functional representation that allows lossless conversions among these representations. The second component focuses on investigating the stronger privacy properties permitted by the structures of the actual data, and addressing the dilemma of interpreting worst-case privacy on average-case data. The third component focuses on using a public dataset to ``denoise'' the private data releases or to facilitate private machine learning. The outputs of the research will be broadly shared through integration in autodp library, and will be integrated in courses.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目的动机是公众对隐私问题的日益关注,新的立法,以及私营和公共部门的应用程序对隐私增强技术(如差异隐私(DP))的高度需求。该项目的首要主题是解决差异隐私从理论构建转化为实用技术时出现的紧迫新挑战。该项目推进了DP领域最先进的研究,并为隐私教育做出了贡献。在研究方面,该项目开发了新的算法和分析工具,使DP能够实现更精确的隐私核算和更高的效用。在教育方面,该项目包括在DP领域培训未来的领导者,创建教育材料,并扩大一个名为AutoDp的开放源码软件库,使最先进的差异私人计算更容易获得。总体而言,综合研究和教育活动有助于在构建差异隐私的创新应用方面进行持续的合作努力。该项目在受使用启发的基础研究中有三个主要组成部分。第一个组件统一了DP中最近的突破,如Renyi DP、Moments Account、f-DP,并产生了允许在这些表示之间进行无损转换的中间泛函表示。第二部分侧重于调查实际数据的结构所允许的更强的隐私属性,并解决解释平均情况数据的最坏情况隐私的两难问题。第三个组件侧重于使用公共数据集对私有数据发布进行“去噪”或促进私有机器学习。这项研究的成果将通过整合在AUTODP图书馆中广泛共享,并将在课程中整合。这一奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Differentially Private Linear Sketches: Efficient Implementations and Applications
差分私有线性草图:高效的实现和应用
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Zhao, Fuheng;Qiao, Dan;Redberg, Rachel;Agrawal, Divyakant;Abbadi, Amr El;Wang, Yu-Xiang
- 通讯作者:Wang, Yu-Xiang
SeqPATE: Differentially Private Text Generation via Knowledge Distillation
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Zhiliang Tian;Ying Zhao;Ziyue Huang;Yu-Xiang Wang;N. Zhang;He He-He
- 通讯作者:Zhiliang Tian;Ying Zhao;Ziyue Huang;Yu-Xiang Wang;N. Zhang;He He-He
Near-Optimal Differentially Private Reinforcement Learning
- DOI:10.48550/arxiv.2212.04680
- 发表时间:2022-12
- 期刊:
- 影响因子:0
- 作者:Dan Qiao;Yu-Xiang Wang
- 通讯作者:Dan Qiao;Yu-Xiang Wang
Advancing Differential Privacy: Where We Are Now and Future Directions for Real-World Deployment
推进差异化隐私:现实世界部署的现状和未来方向
- DOI:10.1162/99608f92.d3197524
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Cummings, Rachel;Desfontaines, Damien;Evans, David;Geambasu, Roxana;Huang, Yangsibo;Jagielski, Matthew;Kairouz, Peter;Kamath, Gautam;Oh, Sewoong;Ohrimenko, Olga
- 通讯作者:Ohrimenko, Olga
Improving the Privacy and Practicality of Objective Perturbation for Differentially Private Linear Learners
- DOI:10.48550/arxiv.2401.00583
- 发表时间:2023-12
- 期刊:
- 影响因子:0
- 作者:Rachel Redberg;Antti Koskela;Yu-Xiang Wang
- 通讯作者:Rachel Redberg;Antti Koskela;Yu-Xiang Wang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yu-Xiang Wang其他文献
New Paradigms and Optimality Guarantees in Statistical Learning and Estimation
- DOI:
10.1184/r1/6720836.v1 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Yu-Xiang Wang - 通讯作者:
Yu-Xiang Wang
Genetic improvement of tilapias in China: Genetic parameters and selection responses in fillet traits of Nile tilapia (<em>Oreochromis niloticus</em>) after six generations of multi-trait selection for growth and fillet yield
- DOI:
10.1016/j.aquaculture.2012.08.028 - 发表时间:
2012-11-05 - 期刊:
- 影响因子:
- 作者:
Jørn Thodesen;Morten Rye;Yu-Xiang Wang;Hans B. Bentsen;Trygve Gjedrem - 通讯作者:
Trygve Gjedrem
Celastrol induces lipophagy via LXRα/ABCA1 pathway in clear cell renal cell carcinoma
雷公藤红素通过 LXRα/ABCA1 通路在透明细胞肾细胞癌中诱导脂肪自噬
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Chanjuan Zhang;Neng Zhu;Jia Long;Hong-Tao Wu;Yu-Xiang Wang;Bi-Yuan Liu;Duan-Fang Liao;Li Qin - 通讯作者:
Li Qin
Response to “Comment on Wang et al.: One-stage posterior focus debridement, interbody graft using titanium mesh cages, posterior instrumentation and fusion in the surgical treatment of lumbo-sacral spinal tuberculosis in the aged”
- DOI:
10.1007/s00264-019-04407-w - 发表时间:
2019-09-02 - 期刊:
- 影响因子:2.600
- 作者:
Hong-Qi Zhang;Weiwei Liao;Yu-Xiang Wang - 通讯作者:
Yu-Xiang Wang
Lycopene, a natural plant extract, alleviates atrazine-induced ferroptosis in hepatocytes by activating cytochrome P450 oxidoreductase
番茄红素是一种天然植物提取物,它通过激活细胞色素P450氧化还原酶来减轻阿特拉津诱导的肝细胞铁死亡。
- DOI:
10.1016/j.ijbiomac.2025.142311 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:8.500
- 作者:
Ping-An Jian;Tian-Ning Yang;Yu-Xiang Wang;Xiang-Yu Ma;Ning-Ning Huang;Yi-Fei Ren;Shi-Hao Yuan;Jin-Long Li;Chi-Chiu Wang;Xue-Nan Li - 通讯作者:
Xue-Nan Li
Yu-Xiang Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yu-Xiang Wang', 18)}}的其他基金
Collaborative Research: SCALE MoDL: Adaptivity of Deep Neural Networks
合作研究:SCALE MoDL:深度神经网络的适应性
- 批准号:
2134214 - 财政年份:2021
- 资助金额:
$ 49.92万 - 项目类别:
Standard Grant
RI: Small: Towards Optimal and Adaptive Reinforcement Learning with Offline Data and Limited Adaptivity
RI:小型:利用离线数据和有限的适应性实现最优和自适应强化学习
- 批准号:
2007117 - 财政年份:2020
- 资助金额:
$ 49.92万 - 项目类别:
Standard Grant
相似国自然基金
发展基于Exact Muffin-Tin轨道的第一性原理量子输运方法
- 批准号:11874265
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Non-perturbative Conformal Field Theory in Quantum Gravity and the Laboratory (Exact CFT)
量子引力中的非微扰共形场论和实验室(精确 CFT)
- 批准号:
EP/Z000106/1 - 财政年份:2024
- 资助金额:
$ 49.92万 - 项目类别:
Research Grant
Research on Computable Analysis and Verification of Efficient Exact Real Computation
高效精确实数计算的可计算分析与验证研究
- 批准号:
24K20735 - 财政年份:2024
- 资助金额:
$ 49.92万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
A Study on Exact Optimal Solutions for Subgroup Identification Based on Discrete Structure Processing
基于离散结构处理的子群辨识精确最优解研究
- 批准号:
23K11023 - 财政年份:2023
- 资助金额:
$ 49.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Exact Formulas for the KPZ Fixed Point and the Directed Landscape
KPZ 不动点和有向景观的精确公式
- 批准号:
2246683 - 财政年份:2023
- 资助金额:
$ 49.92万 - 项目类别:
Standard Grant
Verified exact computation over continuous higher types
验证了连续较高类型的精确计算
- 批准号:
22KF0198 - 财政年份:2023
- 资助金额:
$ 49.92万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Exact Results in Aperiodic Systems
非周期系统中的精确结果
- 批准号:
EP/X012239/1 - 财政年份:2023
- 资助金额:
$ 49.92万 - 项目类别:
Research Grant
QS-EXACT: Quantum SiC for EXtreme Application Clock Technology
QS-EXACT:用于极端应用时钟技术的量子 SiC
- 批准号:
10076744 - 财政年份:2023
- 资助金额:
$ 49.92万 - 项目类别:
Small Business Research Initiative
Exact master equation for a discrete quantum system and the relaxation process
离散量子系统的精确主方程和弛豫过程
- 批准号:
23K03268 - 财政年份:2023
- 资助金额:
$ 49.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Exact Results in Aperiodic Systems
非周期系统中的精确结果
- 批准号:
EP/X012239/2 - 财政年份:2023
- 资助金额:
$ 49.92万 - 项目类别:
Research Grant
Developing Conjugate Models for Exact MCMC free Bayesian Inference with Application to High-Dimensional Spatio-Temporal Data
开发用于精确 MCMC 免费贝叶斯推理的共轭模型并应用于高维时空数据
- 批准号:
2310756 - 财政年份:2023
- 资助金额:
$ 49.92万 - 项目类别:
Standard Grant














{{item.name}}会员




