Exact Formulas for the KPZ Fixed Point and the Directed Landscape

KPZ 不动点和有向景观的精确公式

基本信息

  • 批准号:
    2246683
  • 负责人:
  • 金额:
    $ 29.69万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

The project aims to study the properties of limiting random fields arising from a broad class of physical and probabilistic models, including random growing interfaces, interacting particle systems, and polymers in random environments. This class is called the Kardar-Parisi-Zhang universality class, and it models many real-world phenomena, such as fire propagation, traffic flow, or disordered polymer chains. It has been conjectured and partially proved that all models in the Kardar-Parisi-Zhang universality class exhibit the same limiting behaviors. Understanding these behaviors has become an important area in probability theory and more generally in mathematics. The awardee mentors graduate and undergraduate students and is engaged in educational outreach.The height functions of models in the Kardar-Parisi-Zhang universality class are expected to converge to a limiting space-time fluctuation field, which is called the KPZ fixed point. Moreover, there is a random directed metric on the space-time plane that is expected to govern all the models in the Kardar-Parisi-Zhang universality class. This directed metric is called the directed landscape. While both the KPZ fixed point and the directed landscape are central to the study of the Kardar-Parisi-Zhang universality class, they have only been characterized very recently. The project aims to study these random fields using the approach of exact formulas. The research will first focus on finding exact formulas for the limiting fields in certain exactly solvable models in the Kardar-Parisi-Zhang universality class, such as the directed last passage percolation; these formulas can be used to understand probabilistic properties of the limiting fields. A second goal of this project is to extend the approaches described above to periodic domains.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在研究从广泛的物理和概率模型中产生的极限随机场的特性,包括随机生长界面,相互作用的粒子系统和随机环境中的聚合物。这个类被称为Kardar-Parisi-Zhang普适性类,它模拟了许多现实世界的现象,如火灾传播、交通流量或无序的聚合物链。本文证明了Kardar-Parisi-Zhang普适类中的所有模型具有相同的极限行为。理解这些行为已经成为概率论和更广泛的数学中的一个重要领域。Kardar-Parisi-Zhang普适性课程中模型的高度函数有望收敛到一个极限时空波动场,即KPZ不动点。此外,在时空平面上存在一个随机的有向度规,它被期望支配Kardar-Parisi-Zhang普适类中的所有模型。这个有向度量称为有向景观。虽然KPZ不动点和有向景观都是研究Kardar-Parisi-Zhang普适性类的核心,但它们的特征只是最近才得到表征。该项目旨在使用精确公式的方法来研究这些随机场。研究将首先集中在寻找Kardar-Parisi-Zhang普适类中某些精确可解模型的极限场的精确公式,例如定向最后一次通过渗流;这些公式可以用来理解极限场的概率性质。该项目的第二个目标是将上述方法扩展到周期性领域。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhipeng Liu其他文献

Systematic quantification of histological patterns shows accuracy in reflecting cirrhotic remodeling
组织学模式的系统量化显示了反映肝硬化重塑的准确性
  • DOI:
    10.1111/jgh.13722
  • 发表时间:
    2017-09
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Yan Wang;Wei Huang;Ruhua Li;Zhaoqiang Yun;Youfu Zhu;Jinlian Yang;Hailin Liu;Zhipeng Liu;Qianjing Feng;Jinlin Hou
  • 通讯作者:
    Jinlin Hou
A Preliminary Study on Non-Invasive Detection of Electrical Stimulation Current Based on Magneto-Acoustic Effect
基于磁声效应的电刺激电流无创检测初步研究
The Role of Recitation in the Process of English Learning for College Students of Science and Engineering
背诵在理工科大学生英语学习过程中的作用
Research on processing methods to improve the signal-to-noise ratio of a magnetoacoustic signal
提高磁声信号信噪比的处理方法研究
  • DOI:
    10.1016/j.bspc.2020.101955
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    5.1
  • 作者:
    Shunqi Zhang;Ren Ma;Xiaoqing Zhou;Tao Yin;Zhipeng Liu
  • 通讯作者:
    Zhipeng Liu
Characterization of Fibrosis Changes in Chronic Hepatitis C Patients after Virological Cure: A Systematic Review with Meta-analysis.
病毒学治愈后慢性丙型肝炎患者纤维化变化的特征:系统评价与荟萃分析。

Zhipeng Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhipeng Liu', 18)}}的其他基金

Periodic Kardar-Parisi-Zhang (KPZ) Universality
周期性 Kardar-Parisi-Zhang (KPZ) 普遍性
  • 批准号:
    1953687
  • 财政年份:
    2020
  • 资助金额:
    $ 29.69万
  • 项目类别:
    Standard Grant

相似海外基金

Functoriality for Relative Trace Formulas
相对迹公式的函数性
  • 批准号:
    2401554
  • 财政年份:
    2024
  • 资助金额:
    $ 29.69万
  • 项目类别:
    Continuing Grant
Forest Formulas for the LHC
大型强子对撞机的森林公式
  • 批准号:
    MR/Y003829/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.69万
  • 项目类别:
    Fellowship
Research on trace formulas for covering groups of reductive algebraic groups
还原代数群覆盖群的迹公式研究
  • 批准号:
    23K12951
  • 财政年份:
    2023
  • 资助金额:
    $ 29.69万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Linear and nonlinear modeling of fundamental theory explaining the prescription system of Kampo (traditional Japanese medicine) formulas based on chemistry and data science
基于化学和数据科学的解释汉方(传统日本医学)处方系统的基础理论的线性和非线性建模
  • 批准号:
    22K06690
  • 财政年份:
    2022
  • 资助金额:
    $ 29.69万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Computer Generation of Explicit Formulas for Jacobian Arithmetic on Hyperelliptic Curves
超椭圆曲线雅可比算术显式公式的计算机生成
  • 批准号:
    574796-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 29.69万
  • 项目类别:
    University Undergraduate Student Research Awards
Sampling discretization, cubature formulas and quantitative approximation in multidimensional settings
多维环境中的采样离散化、体积公式和定量近似
  • 批准号:
    RGPIN-2020-03909
  • 财政年份:
    2022
  • 资助金额:
    $ 29.69万
  • 项目类别:
    Discovery Grants Program - Individual
Explicit Formulas for Functorial Transfer Kernels
函数传递核的显式公式
  • 批准号:
    547477-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 29.69万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
New developments in the anticyclotomic Iwasawa theory and special value formulas on L-functions
反圆剖分Iwasawa理论和L函数特殊值公式的新进展
  • 批准号:
    22H00096
  • 财政年份:
    2022
  • 资助金额:
    $ 29.69万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Sampling discretization, cubature formulas and quantitative approximation in multidimensional settings
多维环境中的采样离散化、体积公式和定量近似
  • 批准号:
    RGPIN-2020-03909
  • 财政年份:
    2021
  • 资助金额:
    $ 29.69万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了