CAREER: Faithful Natural Language Generation

职业:忠实的自然语言生成

基本信息

  • 批准号:
    2048122
  • 负责人:
  • 金额:
    $ 54.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-04-01 至 2026-03-31
  • 项目状态:
    未结题

项目摘要

Natural Language Generation is a fundamental component of many real-world applications, including generating captions for visually-impaired people. The CAREER project will seek to develop new methods for generating higher quality and more reliable sentences, and ensure better and more faithful generation results. The project will also lead to open-source software and tools that facilitate the diagnosis of neural generation models, and provide resources for building the next generation faithful language generation models. The investigator will integrate research with educational components, and enable underrepresented high school students to access Artificial Intelligence and Natural Language Processing research and course materials. A major challenge that prevents deep learning based natural language generation models in practical deployment is faithfulness. For example, in the task of image captioning, when using sequence-to-sequence models for generation, it often leads to the “hallucination” phenomenon: an object that does not belong to the context might be generated in the text. Similarly, in the task of data-to-text generation (e.g., generating a Wikipedia biography from structured data) problem, deep learning models are prone to generate erroneous entities and attributes that do not belong to the input data. These behaviors significantly downgrade the performance of neural generative models, and the faithfulness of the output becomes a significant issue for building the next generation faithful natural language generation engines. This project will investigate the complex relationships between uncertainty and faithfulness at various levels. And several mitigation strategies will also be considered. An interactive agent will be built to reason in user-generated text to understand the faithfulness constraint. The goal of this project is to deeply understand how to quantify and access faithfulness in robust settings, and build useful open-source software that facilitates this purpose.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
自然语言生成是许多现实世界应用程序的基本组成部分,包括为视障人士生成字幕。CAREER项目将寻求开发新的方法来生成更高质量和更可靠的句子,并确保更好和更忠实的生成结果。该项目还将带来开源软件和工具,以促进神经生成模型的诊断,并为构建下一代忠实的语言生成模型提供资源。研究人员将把研究与教育部分结合起来,使代表性不足的高中生能够访问人工智能和自然语言处理研究和课程材料。在实际部署中,阻止基于深度学习的自然语言生成模型的一个主要挑战是忠实性。例如,在图像字幕的任务中,当使用序列到序列模型进行生成时,常常会导致“幻觉”现象:可能在文本中生成不属于上下文的对象。类似地,在数据到文本生成的任务中(例如,从结构化数据生成维基百科传记)问题,深度学习模型容易生成不属于输入数据的错误实体和属性。这些行为显著降低了神经生成模型的性能,并且输出的忠实性成为构建下一代忠实自然语言生成引擎的重要问题。这个项目将调查不确定性和忠诚之间的复杂关系在各个层面上。还将考虑几种缓解策略。一个交互式代理将建立在用户生成的文本中的原因,以了解忠诚度约束。该项目的目标是深入了解如何在稳健的环境中量化和获取忠诚度,并构建有助于实现这一目的的有用的开源软件。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值进行评估,被认为值得支持和更广泛的影响审查标准。

项目成果

期刊论文数量(29)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Self-Supervised Knowledge Assimilation for Expert-Layman Text Style Transfer
  • DOI:
    10.1609/aaai.v36i10.21410
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wenda Xu;Michael Stephen Saxon;Misha Sra;W. Wang
  • 通讯作者:
    Wenda Xu;Michael Stephen Saxon;Misha Sra;W. Wang
ImaginE: An Imagination-Based Automatic Evaluation Metric for Natural Language Generation
  • DOI:
    10.18653/v1/2023.findings-eacl.6
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wanrong Zhu;X. Wang;An Yan;M. Eckstein;W. Wang
  • 通讯作者:
    Wanrong Zhu;X. Wang;An Yan;M. Eckstein;W. Wang
Mitigating Covertly Unsafe Text within Natural Language Systems
  • DOI:
    10.48550/arxiv.2210.09306
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alex Mei;Anisha Kabir;Sharon Levy;Melanie Subbiah;Emily Allaway;J. Judge;D. Patton;Bruce Bimber;K. McKeown;William Yang Wang
  • 通讯作者:
    Alex Mei;Anisha Kabir;Sharon Levy;Melanie Subbiah;Emily Allaway;J. Judge;D. Patton;Bruce Bimber;K. McKeown;William Yang Wang
LLMScore: Unveiling the Power of Large Language Models in Text-to-Image Synthesis Evaluation
  • DOI:
    10.48550/arxiv.2305.11116
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yujie Lu;Xianjun Yang;Xiujun Li;X. Wang;William Yang Wang
  • 通讯作者:
    Yujie Lu;Xianjun Yang;Xiujun Li;X. Wang;William Yang Wang
Improving Few-Shot Generalization by Exploring and Exploiting Auxiliary Data
  • DOI:
    10.48550/arxiv.2302.00674
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alon Albalak;Colin Raffel;William Yang Wang
  • 通讯作者:
    Alon Albalak;Colin Raffel;William Yang Wang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Wang其他文献

Enhanced frequency and potential mechanism of
增强频率和潜在机制
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Ding Zhang;William Wang;Francesco Marincola;Xiangdong Wang
  • 通讯作者:
    Xiangdong Wang
Knowledge-Selective Pretraining for Attribute Value Extraction
用于属性值提取的知识选择性预训练
Shorter Signatures from MQ
来自 MQ 的较短签名
LAD: Language Augmented Diffusion for Reinforcement Learning
LAD:强化学习的语言增强扩散
  • DOI:
    10.48550/arxiv.2210.15629
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Edwin Zhang;Yujie Lu;William Wang;Amy Zhang
  • 通讯作者:
    Amy Zhang
EZETIMIBE USE AS AN ADJUNCT TO STATIN THERAPY AFTER MYOCARDIAL INFARCTION: INSIGHTS FROM ACTION REGISTRY-GET WITH THE GUIDELINES AND MEDICARE LINKED DATABASE
  • DOI:
    10.1016/s0735-1097(16)30533-2
  • 发表时间:
    2016-04-05
  • 期刊:
  • 影响因子:
  • 作者:
    William Wang;Anne Hellkamp;Laine Thomas;Jacob Doll;Gregg Fonarow;Eric Peterson;Tracy Wang
  • 通讯作者:
    Tracy Wang

William Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Wang', 18)}}的其他基金

U.S.-Taiwan Joint Seminar: Language and its PsychobiologicalBases; Taipei, Taiwan; December 28, 1992 to January 1, 1993
美台联合研讨会:语言及其心理生物学基础;
  • 批准号:
    9221923
  • 财政年份:
    1992
  • 资助金额:
    $ 54.99万
  • 项目类别:
    Standard Grant
Language Change: Chinese Tone
语言变化:中文声调
  • 批准号:
    8314687
  • 财政年份:
    1984
  • 资助金额:
    $ 54.99万
  • 项目类别:
    Standard Grant
U.S.-China Study of Language Change
中美语言变迁研究
  • 批准号:
    8118400
  • 财政年份:
    1982
  • 资助金额:
    $ 54.99万
  • 项目类别:
    Standard Grant
Individual Differences in Language Ability and Language Behavior
语言能力和语言行为的个体差异
  • 批准号:
    7600017
  • 财政年份:
    1975
  • 资助金额:
    $ 54.99万
  • 项目类别:
    Standard Grant
Phonological Research on the Presence of Phonological Change
音系变化存在的音系研究
  • 批准号:
    7305798
  • 财政年份:
    1973
  • 资助金额:
    $ 54.99万
  • 项目类别:
    Continuing Grant

相似海外基金

Japanese subtitle translations of arthouse movies: Creative, faithful, or both?
艺术电影的日文字幕翻译:创意、忠实,还是两者兼而有之?
  • 批准号:
    23K00197
  • 财政年份:
    2023
  • 资助金额:
    $ 54.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Arithmetic of Kummer-faithful fields
Kummer 忠实域的算术
  • 批准号:
    23K03068
  • 财政年份:
    2023
  • 资助金额:
    $ 54.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Chromosome dynamics and organizations necessary for faithful chromosome segregation
忠实染色体分离所需的染色体动力学和组织
  • 批准号:
    10797444
  • 财政年份:
    2022
  • 资助金额:
    $ 54.99万
  • 项目类别:
Developing complete, independent, and faithful characterization protocols for quantum computers
为量子计算机开发完整、独立且可靠的表征协议
  • 批准号:
    547757-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 54.99万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Faithful flatness of Hopf algebras over their Hopf subalgebras
Hopf 代数在其 Hopf 子代数上的忠实平坦性
  • 批准号:
    2876141
  • 财政年份:
    2022
  • 资助金额:
    $ 54.99万
  • 项目类别:
    Studentship
Chromosome dynamics and organizations necessary for faithful chromosome segregation
忠实染色体分离所需的染色体动力学和组织
  • 批准号:
    10684176
  • 财政年份:
    2022
  • 资助金额:
    $ 54.99万
  • 项目类别:
Faithful Response II: COVID-19 Rapid Test-to-Treat with African American Churches
忠实响应 II:与非裔美国教会一起进行 COVID-19 快速检测治疗
  • 批准号:
    10845416
  • 财政年份:
    2022
  • 资助金额:
    $ 54.99万
  • 项目类别:
Faithful Response II: COVID-19 Rapid Test-to-Treat with African American Churches
忠实响应 II:与非裔美国教会一起进行 COVID-19 快速检测治疗
  • 批准号:
    10617112
  • 财政年份:
    2022
  • 资助金额:
    $ 54.99万
  • 项目类别:
Building clinically faithful ex vivo indolent lymphoma models for personalized therapy
建立临床忠实的离体惰性淋巴瘤模型以进行个性化治疗
  • 批准号:
    10470933
  • 财政年份:
    2021
  • 资助金额:
    $ 54.99万
  • 项目类别:
Genetically faithful modeling of NUP98 rearrangement and co-alterations in acute myeloid leukemia
急性髓性白血病中 NUP98 重排和共同改变的遗传忠实模型
  • 批准号:
    10599975
  • 财政年份:
    2021
  • 资助金额:
    $ 54.99万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了