CAREER: The exceptional biomechanics of legged locomotion in the microcosmos

职业:微观宇宙中腿部运动的卓越生物力学

基本信息

  • 批准号:
    2048235
  • 负责人:
  • 金额:
    $ 77.06万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-04-01 至 2026-03-31
  • 项目状态:
    未结题

项目摘要

This Faculty Early Career Development (CAREER) project combines biological experiments, mathematical modeling, and physical modeling to reveal the performance capabilities and constraints of legged locomotion in small invertebrates. When viewed on a relative scale, the fastest legged animals on the planet are the smallest of invertebrates. Organisms such as beetles, cockroaches, and mites are capable of running at speeds of tens to hundreds of body lengths per second. These remarkable feats of movement at the microscopic scale are enabled by strong limbs, robust foot attachment mechanics, and resilient exoskeleton structures that give these organisms locomotor capabilities vastly different from their larger counterparts. Yet smaller organisms also have to contend with incredibly complex and unstructured substrates that can impose step-to-step height variations equal to or larger than their leg length. This research will develop general principles of legged locomotion in complex environments which could contribute to the development of new legged robots that can move more effectively in unstructured environments. In parallel with the research aims, educational experiences for K-12, undergraduate, and academic professionals to better integrate living systems literacy into engineering curriculum will be developed. These activities include funded summer research experiences for underrepresented students in collaboration with a local Title 1 high school. At the college level, course development, hands-on training for undergraduate and graduate students, and interdisciplinary workshops for researchers in engineering and biology will be implemented. The overall goal of these efforts is to enable engagement, communication, and collaboration between engineers and biologists, facilitated through living systems literacy. This research project uses modeling and experiment to develop new geometric and dynamic scaling principles for legged locomotion in centimeter- and millimeter-scale organisms. Experiments will be performed with invertebrates that vary in size by four orders of magnitude in mass (the American cockroach, the Argentine ant, and the mite). To develop geometric scaling principles between animal morphology and natural substrates, a new experimental substrate-scanning platform to identify the three-dimensional topography of natural substrates will be developed. To study the dynamic scaling principles of force production and acceleration, new force measurement platforms to measure the ground-reaction forces involved in microscale legged locomotion will be developed. These experiments will be supported by physical modeling and computational modeling to elucidate scaling laws for dynamic and geometric phenomena in legged locomotion. The combination of experiments, modeling, and theory will improve our understanding of the biomechanics of microscale legged locomotion. The overall aim of this work is to contextualize the regimes of legged locomotion across the microscopic to macroscopic scales. The research and educational aims of this work are highly interdisciplinary. Graduate and high-school students will receive extensive training in biomechanics, physics, and engineering. Students will present results of these studies at robotics, physics, and biology conferences, and the outcomes will be published in interdisciplinary journals. Thus, the broader impacts include more focused understanding of legged biomechanics, new inspiration for legged robots, new understanding of natural substrates, and training of interdisciplinary scientists. This project was co-funded by the Physiological Mechanisms and Biomechanics Program in the BIO Division of Integrative Organismal Systems, the BIO Division of Biological Infrastructure Innovation Program, and the Biomechanics and Mechanobiology Program in the Engineering Directorate’s Civil, Mechanical, and Manufacturing Innovation Division.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个教师的早期职业发展(职业)项目结合了生物学实验,数学建模和物理建模,以揭示小无脊椎动物中腿部机车的性能能力和限制。当相对规模观察时,地球上最快的腿动物是最小的无脊椎动物。甲虫,蟑螂和螨虫等有机体能够以每秒数十至数百个体长的速度运行。这些显着尺度上的运动壮举由强的肢体,强大的脚依恋机制以及具有弹性的外骨骼结构启用,这些结构使这些生物具有与大型同行的能力大不相同。然而,较小的生物还必须与令人难以置信的复杂且非结构化的底物抗衡,这些基质可以施加等于或大于其腿长的逐步高度变化。这项研究将在复杂的环境中发展出腿部运动的一般原则,这可能有助于开发新的腿部机器人,这些机器人可以在非结构化的环境中更有效地移动。与研究的目的同时,将开发针对K-12,本科和学术专业人士更好地将生活系统素养纳入工程课程的教育经验。这些活动包括为代表性不足的学生提供资助的夏季研究经验,并与当地的1号高中合作。在大学一级,课程发展,本科生和研究生的动手培训以及工程和生物学研究人员的跨学科研讨会将得到实施。这些努力的总体目标是通过生活系统素养支持工程师与生物学家之间的参与,沟通和协作。该研究项目使用建模和实验来开发新的几何和动态缩放原理,以限制厘米和毫米级的组织中的腿部运动。实验将使用质量四个数量级的无脊椎动物(美国蟑螂,阿根廷蚂蚁和螨虫)变化。为了发展动物形态和天然底物之间的几何缩放原理,将开发一个新的实验底物扫描平台,以识别自然基材的三维形态。为了研究力产生和加速的动态缩放原理,将开发出新的力量测量平台,以测量微观腿部运动涉及的地面反应力。这些实验将通过物理建模和计算建模来支持,以阐明腿部运动中动态和几何现象的缩放定律。实验,建模和理论的结合将提高我们对微观运动的生物力学的理解。这项工作的总体目的是将跨微观范围至宏观尺度的腿部运动的机制与环境相关。这项工作的研究和教育目标是高度跨学科的。研究生和高中生将接受广泛的生物力学,物理学和工程培训。学生将在机器人技术,物理学和生物学会议上介绍这些研究的结果,结果将在跨学科期刊上发表。这样一来,更广泛的影响包括对腿部生物力学的更集中理解,腿部机器人的新灵感,对自然基材的新理解以及对跨学科科学家的培训。该项目是由综合有机系统生物部的生理机制和生物力学计划共同资助的影响审查标准。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The bumpy road ahead: the role of substrate roughness on animal walking and a proposed comparative metric
  • DOI:
    10.1242/jeb.245261
  • 发表时间:
    2023-04-01
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Clifton, Glenna;Stark, Alyssa Y.;Gravish, Nicholas
  • 通讯作者:
    Gravish, Nicholas
Directionally Compliant Legs Enabling Crevasse Traversal in Small Ground‐Based Robots
方向顺应腿可实现小型地面机器人的裂缝穿越
  • DOI:
    10.1002/aisy.202200258
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Lathrop, Emily;Tolley, Michael T.;Gravish, Nick
  • 通讯作者:
    Gravish, Nick
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nicholas Gravish其他文献

A Reconfigurable Soft Linkage Robot via Internal "Virtual" Joints.
通过内部“虚拟”关节可重构的软连杆机器人。
  • DOI:
    10.1089/soro.2023.0177
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    7.9
  • 作者:
    Mingsong Jiang;Jiansong Wang;Nicholas Gravish
  • 通讯作者:
    Nicholas Gravish

Nicholas Gravish的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nicholas Gravish', 18)}}的其他基金

Conference/Collaborative Research: Interdisciplinary Workshop on Mechanical Intelligence; Alexandria, Virginia; late 2023/early 2024
会议/合作研究:机械智能跨学科研讨会;
  • 批准号:
    2335477
  • 财政年份:
    2023
  • 资助金额:
    $ 77.06万
  • 项目类别:
    Standard Grant
EFRI C3 SoRo: Control of Local Curvature and Buckling for Multifunctional Textile-Based Robots
EFRI C3 SoRo:多功能纺织机器人的局部曲率和屈曲控制
  • 批准号:
    1935324
  • 财政年份:
    2019
  • 资助金额:
    $ 77.06万
  • 项目类别:
    Standard Grant
EAGER: Modeling the Interaction Physics between Soft-structures and Granular Materials
EAGER:模拟软结构和颗粒材料之间的相互作用物理
  • 批准号:
    1837662
  • 财政年份:
    2018
  • 资助金额:
    $ 77.06万
  • 项目类别:
    Standard Grant

相似国自然基金

Weyl和的渐近性质及其相关例外集的Hausdorff维数
  • 批准号:
    12101002
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目
加法数论中的例外集问题及Linnik问题
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Weyl和的渐近性质及其相关例外集的Hausdorff维数
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于例外点的光学筛选以及光学牵引力的理论与应用研究
  • 批准号:
    12104069
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目
加法数论中的例外集问题及Linnik问题
  • 批准号:
    12101538
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

例外ルールを用いたソフトウェア開発データの解析
使用异常规则分析软件开发数据
  • 批准号:
    24K14896
  • 财政年份:
    2024
  • 资助金额:
    $ 77.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
ゲージ群が例外型リー群の時の超共形指数の新しい計算方法
规范群为异常李群时计算超共形指数的新方法
  • 批准号:
    24KJ1105
  • 财政年份:
    2024
  • 资助金额:
    $ 77.06万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
スペインの自治州の対外活動政策比較研究:バスクとナバーラの事例を中心に
西班牙各自治区对外活动政策比较研究——以巴斯克自治区和纳瓦拉为例
  • 批准号:
    24K15452
  • 财政年份:
    2024
  • 资助金额:
    $ 77.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
オセアニアにおける地域秩序の変容とソフト・パワー:文化外交を事例として
大洋洲地区秩序与软实力转型:文化外交案例研究
  • 批准号:
    24K15485
  • 财政年份:
    2024
  • 资助金额:
    $ 77.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
一時的移住者の人的資本と帰国選択:日本の外国人労働者を事例に
临时移民的人力资本及其回国选择:以日本外国工人为例
  • 批准号:
    24K16380
  • 财政年份:
    2024
  • 资助金额:
    $ 77.06万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了