CAREER: The exceptional biomechanics of legged locomotion in the microcosmos
职业:微观宇宙中腿部运动的卓越生物力学
基本信息
- 批准号:2048235
- 负责人:
- 金额:$ 77.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This Faculty Early Career Development (CAREER) project combines biological experiments, mathematical modeling, and physical modeling to reveal the performance capabilities and constraints of legged locomotion in small invertebrates. When viewed on a relative scale, the fastest legged animals on the planet are the smallest of invertebrates. Organisms such as beetles, cockroaches, and mites are capable of running at speeds of tens to hundreds of body lengths per second. These remarkable feats of movement at the microscopic scale are enabled by strong limbs, robust foot attachment mechanics, and resilient exoskeleton structures that give these organisms locomotor capabilities vastly different from their larger counterparts. Yet smaller organisms also have to contend with incredibly complex and unstructured substrates that can impose step-to-step height variations equal to or larger than their leg length. This research will develop general principles of legged locomotion in complex environments which could contribute to the development of new legged robots that can move more effectively in unstructured environments. In parallel with the research aims, educational experiences for K-12, undergraduate, and academic professionals to better integrate living systems literacy into engineering curriculum will be developed. These activities include funded summer research experiences for underrepresented students in collaboration with a local Title 1 high school. At the college level, course development, hands-on training for undergraduate and graduate students, and interdisciplinary workshops for researchers in engineering and biology will be implemented. The overall goal of these efforts is to enable engagement, communication, and collaboration between engineers and biologists, facilitated through living systems literacy. This research project uses modeling and experiment to develop new geometric and dynamic scaling principles for legged locomotion in centimeter- and millimeter-scale organisms. Experiments will be performed with invertebrates that vary in size by four orders of magnitude in mass (the American cockroach, the Argentine ant, and the mite). To develop geometric scaling principles between animal morphology and natural substrates, a new experimental substrate-scanning platform to identify the three-dimensional topography of natural substrates will be developed. To study the dynamic scaling principles of force production and acceleration, new force measurement platforms to measure the ground-reaction forces involved in microscale legged locomotion will be developed. These experiments will be supported by physical modeling and computational modeling to elucidate scaling laws for dynamic and geometric phenomena in legged locomotion. The combination of experiments, modeling, and theory will improve our understanding of the biomechanics of microscale legged locomotion. The overall aim of this work is to contextualize the regimes of legged locomotion across the microscopic to macroscopic scales. The research and educational aims of this work are highly interdisciplinary. Graduate and high-school students will receive extensive training in biomechanics, physics, and engineering. Students will present results of these studies at robotics, physics, and biology conferences, and the outcomes will be published in interdisciplinary journals. Thus, the broader impacts include more focused understanding of legged biomechanics, new inspiration for legged robots, new understanding of natural substrates, and training of interdisciplinary scientists. This project was co-funded by the Physiological Mechanisms and Biomechanics Program in the BIO Division of Integrative Organismal Systems, the BIO Division of Biological Infrastructure Innovation Program, and the Biomechanics and Mechanobiology Program in the Engineering Directorate’s Civil, Mechanical, and Manufacturing Innovation Division.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个学院早期职业发展(Career)项目结合了生物实验、数学建模和物理建模,以揭示小型无脊椎动物腿部运动的性能能力和限制。相对而言,地球上跑得最快的动物是最小的无脊椎动物。像甲虫、蟑螂和螨虫这样的生物能够以每秒几十到几百个身长的速度奔跑。在微观尺度上,这些非凡的运动壮举是由强壮的四肢、强健的足部附着机制和有弹性的外骨骼结构实现的,这些结构赋予了这些生物与大型生物截然不同的运动能力。然而,较小的生物还必须与难以置信的复杂和非结构化的底物作斗争,这些底物可以施加等于或大于腿长的逐级高度变化。这项研究将发展复杂环境中腿部运动的一般原理,这可能有助于开发新的腿部机器人,可以在非结构化环境中更有效地移动。与研究目标并行,将开发K-12,本科生和学术专业人员更好地将生命系统素养融入工程课程的教育经验。这些活动包括与当地一所一流高中合作,为代表性不足的学生提供资助的暑期研究经验。在学院层面,将实施课程开发,本科生和研究生的实践培训,以及工程和生物学研究人员的跨学科研讨会。这些努力的总体目标是通过生命系统素养促进工程师和生物学家之间的参与、交流和合作。本研究项目采用建模和实验的方法,为厘米级和毫米级生物的腿部运动开发新的几何和动态缩放原理。实验将在大小相差4个数量级的无脊椎动物(美洲蟑螂、阿根廷蚂蚁和螨虫)上进行。为了研究动物形态与天然基质之间的几何缩放原理,将开发一种新的实验基质扫描平台,用于识别天然基质的三维地形。为了研究力产生和加速度的动态缩放原理,将开发新的力测量平台来测量微尺度腿式运动中涉及的地面反作用力。这些实验将通过物理建模和计算建模来阐明腿部运动中动态和几何现象的比例规律。实验、建模和理论的结合将提高我们对微尺度腿部运动的生物力学的理解。这项工作的总体目标是将腿部运动的制度从微观到宏观的尺度上下文中。这项工作的研究和教育目的是高度跨学科的。研究生和高中生将接受生物力学、物理学和工程学方面的广泛培训。学生将在机器人、物理和生物会议上展示这些研究成果,并将成果发表在跨学科期刊上。因此,更广泛的影响包括对腿生物力学的更集中的理解,对腿机器人的新启发,对自然基质的新理解,以及跨学科科学家的培训。该项目由综合有机体系统生物学部生理机制和生物力学项目、生物基础设施创新项目生物学部以及工程理事会土木、机械和制造创新部门的生物力学和机械生物学项目共同资助。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Directionally Compliant Legs Enabling Crevasse Traversal in Small Ground‐Based Robots
方向顺应腿可实现小型地面机器人的裂缝穿越
- DOI:10.1002/aisy.202200258
- 发表时间:2023
- 期刊:
- 影响因子:7.4
- 作者:Lathrop, Emily;Tolley, Michael T.;Gravish, Nick
- 通讯作者:Gravish, Nick
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicholas Gravish其他文献
A Reconfigurable Soft Linkage Robot via Internal "Virtual" Joints.
通过内部“虚拟”关节可重构的软连杆机器人。
- DOI:
10.1089/soro.2023.0177 - 发表时间:
2024 - 期刊:
- 影响因子:7.9
- 作者:
Mingsong Jiang;Jiansong Wang;Nicholas Gravish - 通讯作者:
Nicholas Gravish
Nicholas Gravish的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicholas Gravish', 18)}}的其他基金
Conference/Collaborative Research: Interdisciplinary Workshop on Mechanical Intelligence; Alexandria, Virginia; late 2023/early 2024
会议/合作研究:机械智能跨学科研讨会;
- 批准号:
2335477 - 财政年份:2023
- 资助金额:
$ 77.06万 - 项目类别:
Standard Grant
EFRI C3 SoRo: Control of Local Curvature and Buckling for Multifunctional Textile-Based Robots
EFRI C3 SoRo:多功能纺织机器人的局部曲率和屈曲控制
- 批准号:
1935324 - 财政年份:2019
- 资助金额:
$ 77.06万 - 项目类别:
Standard Grant
EAGER: Modeling the Interaction Physics between Soft-structures and Granular Materials
EAGER:模拟软结构和颗粒材料之间的相互作用物理
- 批准号:
1837662 - 财政年份:2018
- 资助金额:
$ 77.06万 - 项目类别:
Standard Grant
相似国自然基金
光子人工微结构中Exceptional Points附近的模式耦合及相关新特性研究
- 批准号:11674247
- 批准年份:2016
- 资助金额:70.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: GreenFjord-FIBER, Observing the Ice-Ocean Interface with Exceptional Resolution
合作研究:GreenFjord-FIBER,以卓越的分辨率观测冰海界面
- 批准号:
2338503 - 财政年份:2024
- 资助金额:
$ 77.06万 - 项目类别:
Standard Grant
Collaborative Research: GreenFjord-FIBER, Observing the Ice-Ocean Interface with Exceptional Resolution
合作研究:GreenFjord-FIBER,以卓越的分辨率观测冰海界面
- 批准号:
2338502 - 财政年份:2024
- 资助金额:
$ 77.06万 - 项目类别:
Standard Grant
Exceptional Points Enhanced Acoustic Sensing of Biological Cells
特殊点增强生物细胞的声学传感
- 批准号:
2328407 - 财政年份:2024
- 资助金额:
$ 77.06万 - 项目类别:
Standard Grant
The capacity for exceptional brain repair in a novel rodent species.
一种新型啮齿动物具有特殊的大脑修复能力。
- 批准号:
DP240102825 - 财政年份:2024
- 资助金额:
$ 77.06万 - 项目类别:
Discovery Projects
Unlocking exceptional properties through pressure-induced phase transitions
通过压力诱导的相变释放卓越的性能
- 批准号:
DP240101678 - 财政年份:2024
- 资助金额:
$ 77.06万 - 项目类别:
Discovery Projects
RAPID: Managed Groundwater Recharge (MAR) in a year of exceptional precipitation: Evaluating the impact of dry-well versus on-farm recharge on water quality
RAPID:异常降水年份的地下水管理补给 (MAR):评估干井补给与农场补给对水质的影响
- 批准号:
2334880 - 财政年份:2023
- 资助金额:
$ 77.06万 - 项目类别:
Standard Grant
Loan structure or religious framing: What drives the exceptional performance of personal loans by Islamic banks?
贷款结构或宗教框架:是什么推动了伊斯兰银行个人贷款的卓越表现?
- 批准号:
23K12500 - 财政年份:2023
- 资助金额:
$ 77.06万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Understanding the Exceptional Near-Field Auditory System of the Aye-Aye, One of the Most Unusual Primates in the World
职业:了解世界上最不寻常的灵长类动物之一指猴的特殊近场听觉系统
- 批准号:
2320815 - 财政年份:2023
- 资助金额:
$ 77.06万 - 项目类别:
Standard Grant
Advancing Photoacoustic Tomography in breast imaging to predict response in breast cancers treated with neoadjuvant therapy
推进乳腺成像中的光声断层扫描以预测新辅助治疗乳腺癌的反应
- 批准号:
10715163 - 财政年份:2023
- 资助金额:
$ 77.06万 - 项目类别: