CAREER: Elucidating the Interaction Dynamics of Soil Metals with Flavonoids in the Plant Rhizosphere

职业:阐明植物根际土壤金属与黄酮类化合物的相互作用动态

基本信息

  • 批准号:
    2048265
  • 负责人:
  • 金额:
    $ 85.76万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-15 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

Plants must acquire metal micronutrients in trace amounts from the soil for their growth and survival. The levels of these metals must be regulated to prevent unwanted toxicity or deficiency. The goal of this project is to untangle how plants chemically shape the region of soil surrounding their roots, known as the rhizosphere, to regulate and properly utilize these metal micronutrients. This research specifically investigates both how interactions of soil copper with secondary metabolites impact copper availability as well as how copper may regulate the biochemical function of these metabolites. Central to the project objectives is the development of chemical strategies and tools that illuminate metal biochemistry in complex environments. In tandem with laboratory-based investigations, these studies will be enhanced by the development of a computer-based undergraduate research course platform aimed at enhancing community college STEM transfer pathways. Participating students will have the opportunity to make meaningful contributions to interdisciplinary research while establishing and building science identity. These combined studies will offer molecular insight into the metal-associated drivers for plant fitness, providing new opportunities to harness rhizosphere processes in meeting global challenges such as the increasing food demands of a growing population and detoxifying contaminated environments.This project centers on deciphering metal dynamics in the plant rhizosphere and its contribution to plant-biotic interactions and plant health. While present in soil matter, metal micronutrients primarily exist in non-available forms that the plant must mobilize to acquire and utilize. This project seeks to determine how molecular-level interactions between copper and flavonoids (secondary metabolites secreted by the roots) in the soil environment impact plant survival and growth via three objectives. (1) The first objective is to determine how metal binding to flavonoids impacts flavonoid function in plant-microbe signaling. A combination of reagent arrays and chemometric analysis will be used to profile flavonoids in terms of their copper reactivity. Application of this strategy to plant-microbe models will provide new insight on the influence of metals on flavonoid perception and specificity in the rhizosphere. (2) The second objective will probe how flavonoids impact metal bioavailability by developing and applying imaging systems that differentiate mobile and immobile forms of copper. (3) A computer-based course-based undergraduate research experience (CURE) platform will be established as a vehicle for improving the STEM transfer pathway for California community college students. CURE projects will utilize open-source data to identify pathways that link metal metabolism and rhizosphere signaling. Taken together, these studies will test the hypothesis that the metal-interacting capacity of a given flavonoid may define its function within plant-soil feedback processes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
植物必须从土壤中获得微量的金属微量营养素才能生长和生存。必须调节这些金属的含量,以防止不必要的毒性或缺陷。该项目的目标是解开植物如何化学形状的土壤区域周围的根,被称为根际,以调节和适当地利用这些金属微量营养素。本研究专门研究了土壤铜与次生代谢物的相互作用如何影响铜的有效性,以及铜如何调节这些代谢物的生化功能。该项目的核心目标是开发化学策略和工具,以阐明复杂环境中的金属生物化学。与基于实验室的调查相结合,这些研究将通过开发一个基于计算机的本科研究课程平台来加强,该平台旨在加强社区大学STEM转移途径。参与的学生将有机会为跨学科研究做出有意义的贡献,同时建立和建立科学身份。这些研究将为植物适应性的金属相关驱动因素提供分子洞察力,为利用根际过程应对全球挑战提供新的机会,例如不断增长的人口对粮食需求的增加和污染环境的解毒。该项目的中心是破译植物根际金属动力学及其对植物-生物相互作用和植物健康的贡献。虽然存在于土壤物质中,但金属微量营养素主要以不可利用的形式存在,植物必须动员起来才能获得和利用。该项目旨在确定土壤环境中铜和类黄酮(根系分泌的次级代谢产物)之间的分子水平相互作用如何通过三个目标影响植物的生存和生长。(1)第一个目标是确定金属与类黄酮的结合如何影响类黄酮在植物-微生物信号传导中的功能。将使用试剂阵列和化学计量学分析的组合来分析黄酮类化合物的铜反应性。将这一策略应用于植物-微生物模型将为金属对根际黄酮感知和特异性的影响提供新的见解。(2)第二个目标将探讨类黄酮如何影响金属生物利用度的开发和应用成像系统,区分移动的和非移动的形式的铜。(3)一个基于计算机的课程为基础的本科生研究经验(CURE)平台将被建立作为改善加州社区学院学生的STEM转移途径的工具。CURE项目将利用开源数据来确定连接金属代谢和根际信号的途径。总之,这些研究将测试的假设,即金属相互作用能力的一个给定的类黄酮可能会定义其功能在植物土壤反馈processes.This奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marie Heffern其他文献

Marie Heffern的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Elucidating pathogenic mechanisms of heart failure through RNA metabolism and protein-protein interaction mediated by transcriptional modulator IkBz
通过转录调节剂 IkBz 介导的 RNA 代谢和蛋白质-蛋白质相互作用阐明心力衰竭的致病机制
  • 批准号:
    23K07501
  • 财政年份:
    2023
  • 资助金额:
    $ 85.76万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Elucidating the relevance of BARD1-PLK1 interaction in PDAC and response to therapy
阐明 PDAC 中 BARD1-PLK1 相互作用与治疗反应的相关性
  • 批准号:
    10729693
  • 财政年份:
    2023
  • 资助金额:
    $ 85.76万
  • 项目类别:
Collaborative Research: Elucidating the Nanoscale Interaction between Invertible Micellar Assemblies (IMAs) and Biopolymer Cargos under Varied Environments
合作研究:阐明不同环境下可逆胶束组件(IMA)和生物聚合物货物之间的纳米级相互作用
  • 批准号:
    2217474
  • 财政年份:
    2022
  • 资助金额:
    $ 85.76万
  • 项目类别:
    Standard Grant
Elucidating the signaling and protein interaction networks of the O-GlcNAc transferase during embryonic stem cell state transitions
阐明胚胎干细胞状态转变过程中 O-GlcNAc 转移酶的信号传导和蛋白质相互作用网络
  • 批准号:
    10501416
  • 财政年份:
    2022
  • 资助金额:
    $ 85.76万
  • 项目类别:
Elucidating the gut-brain interaction in depression using functional brain imaging
使用功能性脑成像阐明抑郁症中肠-脑相互作用
  • 批准号:
    22K07603
  • 财政年份:
    2022
  • 资助金额:
    $ 85.76万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Establishment of technology to maintain the functionality of interior spaces during earthquakes by elucidating the interaction between ceilings, walls, and equipment
通过阐明天花板、墙壁和设备之间的相互作用,建立在地震期间维持室内空间功能的技术
  • 批准号:
    22H00232
  • 财政年份:
    2022
  • 资助金额:
    $ 85.76万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Elucidating the signaling and protein interaction networks of the O-GlcNAc transferase during embryonic stem cell state transitions
阐明胚胎干细胞状态转变过程中 O-GlcNAc 转移酶的信号传导和蛋白质相互作用网络
  • 批准号:
    10659048
  • 财政年份:
    2022
  • 资助金额:
    $ 85.76万
  • 项目类别:
CAREER: Elucidating the Interaction(s) Between Bacteria and Archaea in a Biocathode
职业:阐明生物阴极中细菌和古细菌之间的相互作用
  • 批准号:
    2145902
  • 财政年份:
    2022
  • 资助金额:
    $ 85.76万
  • 项目类别:
    Continuing Grant
Elucidating mechanisms of ATXN2 interaction with TDP-43 in human motor neuron models of Amyotrophic Lateral Sclerosis
阐明肌萎缩侧索硬化症人类运动神经元模型中 ATXN2 与 TDP-43 相互作用的机制
  • 批准号:
    10223698
  • 财政年份:
    2021
  • 资助金额:
    $ 85.76万
  • 项目类别:
Elucidating mechanisms of ATXN2 interaction with TDP-43 in human motor neuron models of Amyotrophic Lateral Sclerosis
阐明肌萎缩侧索硬化症人类运动神经元模型中 ATXN2 与 TDP-43 相互作用的机制
  • 批准号:
    10400026
  • 财政年份:
    2021
  • 资助金额:
    $ 85.76万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了