CAREER: Faithful, Reducible, and Invertible Learning in Distribution System for Power Flow

职业:潮流配电系统中的忠实、可简化和可逆学习

基本信息

  • 批准号:
    2048288
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-02-01 至 2026-01-31
  • 项目状态:
    未结题

项目摘要

As the electric distribution grid becomes smarter, new services have become available, such as community renewable hubs, home energy management with electric vehicles (EV), and demand response programs. However, these new services pose significant challenges to grid reliability due to (1) system unobservability, (2) data quality issues because of low-resolution and bad data, and (3) highly intermittent energy sources like solar and wind generation and EV charging. Without solving these problems, power outages and equipment damage can happen frequently, leading to device malfunctions, expensive maintenance costs, and unsatisfied customers. The goal of this CAREER effort is to develop the theoretical foundation of building a rigorous power flow equation in the distribution grid under unobservability. The intellectual merit of the proposed research lies in the generation of new knowledge for learning theories, mechanisms, and architectures. Key advances are (1) designs of deep neural network (DNN)-based power flow equations that are not only physically reducible but also convex to the intermediate layer in DNN that represents physics, (2) creation of a physical-generative adversarial network to boost the robustness of reconstructing power flow against limited data, and (3) derivation of the solution for inverting the DNN-based power flow equation based on the physical DNN for real-time power flow analysis.The Broader Impacts include a physics-enhanced AI framework to utilities and companies that also demonstrate a more resilient distribution grid management system due to the reducibility, faithfulness, and invertibility of our models. The proposed work will help reduce the cost of managing behind-the-meter resources and emissions greatly by bridging the gap between physics and learning in distribution grids. Such interdisciplinary analysis for grid modernization will create a new class of open-source code on new machine learning methods, supporting a thriving community of academics and industry collaborators. The integrated education component will also create a scientific program for K12 students and minorities to engage in activities related to AI for power systems. To popularize AI among the utility engineers, the PI plans to deploy the proposed platforms. The PI will also expand his webinar series to promote communications between academia and industry.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着配电网变得更加智能,新的服务已经出现,例如社区可再生能源中心、电动汽车(EV)家庭能源管理和需求响应计划。然而,这些新服务对电网可靠性提出了重大挑战,原因是:(1)系统不可观测性,(2)低分辨率和不良数据导致的数据质量问题,以及(3)太阳能和风力发电以及电动汽车充电等高度间歇性能源。如果不解决这些问题,停电和设备损坏可能会频繁发生,导致设备故障,昂贵的维护成本和不满意的客户。这个职业生涯的努力的目标是发展的理论基础,建立一个严格的潮流方程在配电网下不可观测。所提出的研究的智力价值在于学习理论,机制和架构的新知识的产生。关键进展是(1)基于深度神经网络(DNN)的潮流方程的设计,这些方程不仅在物理上可简化,而且凸向DNN中代表物理的中间层,(2)创建物理生成对抗网络,以提高针对有限数据重建潮流的鲁棒性,以及(3)推导基于DNN的潮流方程的解,该解基于用于实时潮流分析的物理DNN。增强的人工智能框架,公用事业和公司,也证明了一个更有弹性的配电网管理系统,由于减少,忠实性和可逆性,我们的模型。拟议的工作将有助于减少管理背后的电表资源和排放的成本大大缩小物理和学习之间的差距在配电网。这种针对网格现代化的跨学科分析将为新的机器学习方法创建一类新的开源代码,支持蓬勃发展的学术界和行业合作者社区。综合教育部分还将为K12学生和少数民族创建一个科学计划,以参与与电力系统人工智能相关的活动。为了在公用事业工程师中推广人工智能,PI计划部署拟议的平台。PI还将扩大他的网络研讨会系列,以促进学术界和工业界之间的沟通。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Enhance Unobservable Solar Generation Estimation via Constructive Generative Adversarial Networks
  • DOI:
    10.1109/tpwrs.2023.3262773
  • 发表时间:
    2024-01
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    Jingyi Yuan;Yang Weng
  • 通讯作者:
    Jingyi Yuan;Yang Weng
Solar Panel Identification Via Deep Semi-Supervised Learning and Deep One-Class Classification
  • DOI:
    10.1109/tpwrs.2021.3125613
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    Elizabeth Cook;Shuman Luo;Yang Weng
  • 通讯作者:
    Elizabeth Cook;Shuman Luo;Yang Weng
Spatial-Temporal Deep Learning for Hosting Capacity Analysis in Distribution Grids
  • DOI:
    10.1109/tsg.2022.3196943
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    9.6
  • 作者:
    Jiaqi Wu;Jingyi Yuan;Yang Weng;Raja Ayyanar
  • 通讯作者:
    Jiaqi Wu;Jingyi Yuan;Yang Weng;Raja Ayyanar
Attack Power System State Estimation by Implicitly Learning the Underlying Models
  • DOI:
    10.1109/tsg.2022.3197770
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    9.6
  • 作者:
    N. Costilla-Enríquez;Yang Weng
  • 通讯作者:
    N. Costilla-Enríquez;Yang Weng
Graph Neural Networks for Voltage Stability Margins With Topology Flexibilities
  • DOI:
    10.1109/oajpe.2022.3223962
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    K. Guddanti;Yang Weng;Antoine Marot;Benjamin Donnot;P. Panciatici
  • 通讯作者:
    K. Guddanti;Yang Weng;Antoine Marot;Benjamin Donnot;P. Panciatici
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yang Weng其他文献

One-Way-Signal-Based Localization Method of Multiple Autonomous Underwater Vehicles for Distributed Ocean Surveys
用于分布式海洋调查的多自主水下航行器单向信号定位方法
  • DOI:
    10.20965/jrm.2024.p0190
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Matsuda;Yang Weng;Yuki Sekimori;T. Sakamaki;Toshihiro Maki
  • 通讯作者:
    Toshihiro Maki
Sensor Selection for Parameterized Random Field Estimation in Wireless Sensor Networks
无线传感器网络中参数化随机场估计的传感器选择
Distribution Grid Line Outage Identification With Unknown Pattern and Performance Guarantee
未知模式的配电网线路停电识别和性能保证
  • DOI:
    10.1109/tpwrs.2023.3314708
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    Chenhan Xiao;Y. Liao;Yang Weng
  • 通讯作者:
    Yang Weng
Physically Invertible System Identification for Monitoring System Edges with Unobservability
物理可逆系统识别,用于监控不可观测的系统边缘
Combining Gene-Finding Programs by Using Dempster-Shafer Theory of Evidence for Gene Prediction
使用 Dempster-Shafer 证据理论结合基因查找程序进行基因预测

Yang Weng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yang Weng', 18)}}的其他基金

Collaborative Research: Learning and Optimizing Power Systems: A Geometric Approach
协作研究:学习和优化电力系统:几何方法
  • 批准号:
    1810537
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似海外基金

Japanese subtitle translations of arthouse movies: Creative, faithful, or both?
艺术电影的日文字幕翻译:创意、忠实,还是两者兼而有之?
  • 批准号:
    23K00197
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Arithmetic of Kummer-faithful fields
Kummer 忠实域的算术
  • 批准号:
    23K03068
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Chromosome dynamics and organizations necessary for faithful chromosome segregation
忠实染色体分离所需的染色体动力学和组织
  • 批准号:
    10797444
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
Developing complete, independent, and faithful characterization protocols for quantum computers
为量子计算机开发完整、独立且可靠的表征协议
  • 批准号:
    547757-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Faithful flatness of Hopf algebras over their Hopf subalgebras
Hopf 代数在其 Hopf 子代数上的忠实平坦性
  • 批准号:
    2876141
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Studentship
Faithful Response II: COVID-19 Rapid Test-to-Treat with African American Churches
忠实响应 II:与非裔美国教会一起进行 COVID-19 快速检测治疗
  • 批准号:
    10845416
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
Faithful Response II: COVID-19 Rapid Test-to-Treat with African American Churches
忠实响应 II:与非裔美国教会一起进行 COVID-19 快速检测治疗
  • 批准号:
    10617112
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
Chromosome dynamics and organizations necessary for faithful chromosome segregation
忠实染色体分离所需的染色体动力学和组织
  • 批准号:
    10684176
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
Building clinically faithful ex vivo indolent lymphoma models for personalized therapy
建立临床忠实的离体惰性淋巴瘤模型以进行个性化治疗
  • 批准号:
    10470933
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
Genetically faithful modeling of NUP98 rearrangement and co-alterations in acute myeloid leukemia
急性髓性白血病中 NUP98 重排和共同改变的遗传忠实模型
  • 批准号:
    10599975
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了