Collaborative Research: Solid-State Selenium Photo-multiplier with a High-K Dielectric Blocking Layer for High, Noise-free Avalanche Gain

合作研究:具有高 K 电介质阻挡层的固态硒光电倍增器,可实现高、无噪声的雪崩增益

基本信息

  • 批准号:
    2048397
  • 负责人:
  • 金额:
    $ 15.37万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-15 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Proposal Number: 2048390 (Lead), 2048397 & 2048400Principal Investigator: Amirhossein Goldan (PI), Ayaskanta Sahu (Co-PI) & Dragica Vasileska (Co-PI)Title: Collaborative Research: Solid-State Selenium Photo-multiplier with a High-K Dielectric Blocking Layer for High, Noise-free Avalanche GainInstitution: State University of New York Stony Brook (Lead), New York University & Arizona State UniversityNontechnical AbstractThe search for a solid-state photodetector that mimics the behavior of a classical vacuum photomultiplier tube has been a long-standing quest because of the highly stochastic impact ionization process in single-crystalline semiconductors. Amorphous selenium is the only disordered semiconductor that produces avalanche multiplication gain while exhibiting a very low excess noise factor due to non-ballistic and single-carrier impact ionization. The primary objective of this project is to fabricate and characterize high sensitivity solid-state photomultipliers by fully exploiting the deterministic avalanche multiplication properties of amorphous selenium via a solution-processed oxide blocking layer with a high dielectric constant. From the theoretical perspective, the noise-free nature of the hole impact ionization process will be modeled in amorphous selenium to enhance scientific insight into hot carrier transport in disordered structures. The resulting technology can be utilized in a wide range of advanced fields and applications such as medical diagnostic imaging, high energy physics, Cherenkov imaging detectors and trackers, optical communications, and time-domain spectroscopy. The broader impact of this project involves training of students (graduate, undergraduate, and under-represented) in this exciting field of research, and dissemination of tools and materials online.Technical AbstractAmorphous selenium is poised to revolutionize solid-state photodetection and imaging through its noise-free single-carrier avalanche multiplication gain. Currently, to achieve high dynamic range and linear mode operation, the detectors used for low-light detection are almost exclusively made of vacuum photomultiplier tubes, where only electrons exist and are multiplied deterministically by the dynodes. However, photomultiplier tubes are bulky, have poor quantum efficiency in the visible spectrum, and cannot be made into an imaging array. Although solid-state crystalline semiconductors are also used as avalanche photodiodes, the amount of enhancement in signal-to-noise ratio is often severely limited by excess noise due to the stochastic nature of the avalanche impact ionization process. Thus, the optimal signal-to-noise ratio typically occurs at very low gains. This work proposes a true solid-state alternative to the vacuum photomultiplier tube using amorphous selenium as the bulk avalanche i-layer, which is a unique disordered photosensing material. In this amorphous selenium layer, hole carrier transport can be shifted entirely from localized to extended states, where holes experience deterministic and non-Markovian impact ionization avalanche. To utilize this material property in devices and imagers, and to achieve reliable and repeatable avalanche gain without irreversible breakdown, a non-insulating n-type hole-blocking/electron-transporting layer is required. This work proposes use of room-temperature, solution-processed quantum-dots, as the high-k dielectric hole-blocking n-layer. Solution synthesis of colloidal quantum dots allows for high-quality stoichiometric and vacancy-free crystals with potential for room-temperature deposition in the desired reverse-biased p-i-n structure, without inducing any crystallization of amorphous selenium, as opposed to other incompatible high-temperature fabrication techniques. This methodology enables, for the first time, reaching an avalanche gain of 10E6 or beyond using a solid-state material. Computational models that explore the physics of the hole blocking layers shall be created to understand and optimize device performance. To this effect, an in-house kinetic Monte Carlo code used to model transport through defects will be developed. Next, an in-house full-band Monte Carlo simulator, that utilizes the full band structure of selenium, will be established to examine the hole impact ionization process in bulk selenium. As a final step, the kinetic and the full-band Monte Carlo results will be coupled for computer-aided design simulations, to provide design guidelines for the fabrication of more efficient selenium photomultipliers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
提案号:2048390 (Lead), 2048397 & 2048400首席研究员:Amirhossein Goldan (PI), Ayaskanta Sahu (Co-PI) & Dragica Vasileska (Co-PI)标题:合作研究:高k介电阻挡层用于高、无噪声雪崩增益的固态硒光倍增由于单晶半导体中高度随机的冲击电离过程,寻找一种模仿经典真空光电倍增管行为的固态光电探测器一直是一个长期的探索。无定形硒是唯一的无序半导体,产生雪崩倍增增益,同时表现出非常低的多余噪声因子,由于非弹道和单载流子冲击电离。该项目的主要目标是通过具有高介电常数的溶液处理氧化物阻挡层,充分利用非晶态硒的确定性雪崩倍增特性,制造和表征高灵敏度固态光电倍增管。从理论的角度来看,空穴冲击电离过程的无噪声性质将在无定形硒中建模,以增强对无序结构中热载流子输运的科学认识。由此产生的技术可用于广泛的先进领域和应用,如医学诊断成像、高能物理、切伦科夫成像探测器和跟踪器、光通信和时域光谱。这个项目更广泛的影响包括在这个令人兴奋的研究领域培训学生(研究生、本科生和代表性不足的学生),以及在线传播工具和材料。技术摘要:无定形硒通过其无噪声的单载流子雪崩倍增增益,有望彻底改变固态光探测和成像。目前,为了实现高动态范围和线性模式操作,用于低光探测的探测器几乎完全由真空光电倍增管制成,其中只有电子存在,并且由dynodes确定性地乘以。然而,光电倍增管体积庞大,在可见光谱中量子效率较差,无法制成成像阵列。虽然固态晶体半导体也被用作雪崩光电二极管,但由于雪崩冲击电离过程的随机性,过量的噪声往往严重限制了信噪比的增强量。因此,最佳信噪比通常发生在非常低的增益。这项工作提出了一种真正的固态替代真空光电倍增管,使用无定形硒作为体雪崩i层,这是一种独特的无序光敏材料。在这种无定形硒层中,空穴载流子输运可以完全从局域态转移到扩展态,其中空穴经历确定性和非马尔可夫冲击电离雪崩。为了在器件和成像仪中利用这种材料特性,并在不可逆击穿的情况下实现可靠和可重复的雪崩增益,需要一种非绝缘的n型空穴阻挡/电子传输层。这项工作提出使用室温溶液处理的量子点作为高k介电空穴阻挡n层。胶体量子点的溶液合成允许高质量的化学计量和无空位晶体,具有在室温下以所需的逆偏p-i-n结构沉积的潜力,而不诱导任何无定形硒的结晶,这与其他不相容的高温制造技术相反。该方法首次实现了使用固态材料获得10E6或更高的雪崩增益。应创建探索孔阻挡层物理特性的计算模型,以了解和优化器件性能。为此,将开发一个内部动力学蒙特卡罗代码,用于模拟通过缺陷的传输。接下来,将建立一个内部全波段蒙特卡罗模拟器,利用硒的全波段结构,来研究大块硒的空穴冲击电离过程。作为最后一步,动力学和全波段蒙特卡罗结果将耦合计算机辅助设计模拟,为制造更高效的硒光电倍增管提供设计指导。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ayaskanta Sahu其他文献

The more the merrier: optimizing monomer concentration for supersaturation controlled synthesis of stable ultra-small CsPbBrsub3/sub nanocrystals for blue emission
多多益善:优化单体浓度以实现超饱和控制合成稳定的蓝色发射超小 CsPbBr3 纳米晶体
  • DOI:
    10.1039/d4cc00163j
  • 发表时间:
    2024-03-19
  • 期刊:
  • 影响因子:
    4.200
  • 作者:
    Vikash Kumar Ravi;Zheng Li;Shlok Joseph Paul;Ayaskanta Sahu
  • 通讯作者:
    Ayaskanta Sahu
Colloidal quantum dots for thermal infrared sensing and imaging
  • DOI:
    10.1186/s40580-019-0178-1
  • 发表时间:
    2019-03-05
  • 期刊:
  • 影响因子:
    11.000
  • 作者:
    Shihab Bin Hafiz;Michael Scimeca;Ayaskanta Sahu;Dong-Kyun Ko
  • 通讯作者:
    Dong-Kyun Ko

Ayaskanta Sahu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ayaskanta Sahu', 18)}}的其他基金

Synthesis, Defect Structure and Photo-physics of Ternary Pnictide Nanocrystals
三元磷族元素纳米晶的合成、缺陷结构及光物理
  • 批准号:
    2114385
  • 财政年份:
    2021
  • 资助金额:
    $ 15.37万
  • 项目类别:
    Standard Grant
Collaborative Research: Silver-Based Colloidal Quantum Dot Devices for Ubiquitous Mid-Wavelength Infrared Sensing
合作研究:用于无处不在的中波长红外传感的银基胶体量子点器件
  • 批准号:
    1809064
  • 财政年份:
    2018
  • 资助金额:
    $ 15.37万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Understanding the discharge mechanism at solid/aprotic interfaces of Na-O2 battery cathodes to enhance cell cyclability
合作研究:了解Na-O2电池阴极固体/非质子界面的放电机制,以增强电池的循环性能
  • 批准号:
    2342025
  • 财政年份:
    2024
  • 资助金额:
    $ 15.37万
  • 项目类别:
    Standard Grant
Collaborative Research: Solid-State Additive Manufacturing of Metal Matrix Composites via Cold Spray
合作研究:通过冷喷涂进行金属基复合材料的固态增材制造
  • 批准号:
    2330318
  • 财政年份:
    2024
  • 资助金额:
    $ 15.37万
  • 项目类别:
    Standard Grant
Collaborative Research: Solid-State Additive Manufacturing of Metal Matrix Composites via Cold Spray
合作研究:通过冷喷涂进行金属基复合材料的固态增材制造
  • 批准号:
    2330319
  • 财政年份:
    2024
  • 资助金额:
    $ 15.37万
  • 项目类别:
    Standard Grant
Collaborative Research: Designing Solid Boosters and Electrolytes for Redox-Targeting Flow Batteries
合作研究:为氧化还原目标液流电池设计固体助推器和电解质
  • 批准号:
    2329651
  • 财政年份:
    2024
  • 资助金额:
    $ 15.37万
  • 项目类别:
    Standard Grant
Collaborative Research: Designing Solid Boosters and Electrolytes for Redox-Targeting Flow Batteries
合作研究:为氧化还原目标液流电池设计固体助推器和电解质
  • 批准号:
    2329652
  • 财政年份:
    2024
  • 资助金额:
    $ 15.37万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding the discharge mechanism at solid/aprotic interfaces of Na-O2 battery cathodes to enhance cell cyclability
合作研究:了解Na-O2电池阴极固体/非质子界面的放电机制,以增强电池的循环性能
  • 批准号:
    2342024
  • 财政年份:
    2024
  • 资助金额:
    $ 15.37万
  • 项目类别:
    Standard Grant
Collaborative Research: NCS-FR: DEJA-VU: Design of Joint 3D Solid-State Learning Machines for Various Cognitive Use-Cases
合作研究:NCS-FR:DEJA-VU:针对各种认知用例的联合 3D 固态学习机设计
  • 批准号:
    2319619
  • 财政年份:
    2023
  • 资助金额:
    $ 15.37万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding Sulfur-Carbon-Solid Electrolyte Interface of Lithium/Sulfur Solid-State Batteries
合作研究:了解锂/硫固态电池的硫-碳-固体电解质界面
  • 批准号:
    2241007
  • 财政年份:
    2023
  • 资助金额:
    $ 15.37万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: CRYO: Engineering Atomically Thin Magnetic Materials for Efficient Solid-State Cooling at Cryogenic Temperatures
EAGER/合作研究:CRYO:工程原子薄磁性材料,可在低温下进行高效固态冷却
  • 批准号:
    2233592
  • 财政年份:
    2023
  • 资助金额:
    $ 15.37万
  • 项目类别:
    Standard Grant
Collaborative Research: Porous Molecules as a Platform for Solid-State Organometallic Chemistry
合作研究:多孔分子作为固态有机金属化学的平台
  • 批准号:
    2310682
  • 财政年份:
    2023
  • 资助金额:
    $ 15.37万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了