EAGER/Collaborative Research: CRYO: Engineering Atomically Thin Magnetic Materials for Efficient Solid-State Cooling at Cryogenic Temperatures

EAGER/合作研究:CRYO:工程原子薄磁性材料,可在低温下进行高效固态冷却

基本信息

  • 批准号:
    2233592
  • 负责人:
  • 金额:
    $ 12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Solid-state cooling schemes can potentially circumvent the use of increasingly expensive and scarce He3 in cryogenic refrigeration below 1K. He3 is required in almost all current commercial ultralow refrigeration approaches used in the operation of quantum computers, sensors and other new technologies. This EArly-concept Grant for Exploratory Research (EAGER) project will advance the fundamental understanding of the heat-release process in ultrathin magnetic materials and thus provide the guidance to manufacture magnetic quantum materials for next-generation solid-state refrigeration, promoting the fundamental physics of heat transport and cooling on the nanoscale and aid in the development of new classes of cooling technologies. When certain magnetic materials are magnetized at low temperatures, the removal of the magnetic field leads to the randomization of once magnetically ordered domains within material. During the formation or ordering of these of multiple magnetic domains, thermal energy in the material is absorbed by domains to reorient their magnetizations, thereby leading to temperature drop (i.e., cooling). Atomically thin magnetic materials can be engineered to control and enhance these processes and thus could open up unexplored opportunities for emerging cooling devices. This effort will support the fundamental research to understand the modifications to these magnetic quantum materials to enable efficient solid-state cooling, particularly at cryogenic temperatures such as below 1K. The technology to be developed can mitigate the existing challenges associated with the worldwide shortage of helium. High-school students and students of traditionally underrepresented groups will be exposed to the comprehensive training including quantum materials fabrication, materials modelling and simulation, cryogenic hardware engineering, and low-temperature experiments. This research will help to equip these students with necessary knowledge and expertise as the workforce for the future quantum science and engineering.The magnetocaloric effect holds a great potential for solid-state refrigeration. However, the magnetocaloric effect in traditional materials is not strong, but it can be enhanced if a structural phase change can be concomitant with the magnetic phase transition. However, inducing these first-order phase transitions have conventionally relied on the compositional modification of the material through scarce and expensive rare-earth-elements based compounds. This research proposes to overcome the knowledge gap in the understanding and control of two-dimensional magnetic materials for an enhanced magnetocaloric effect. The research team will apply first-principles materials simulations to understand the magnetism-structure relationship in two-dimensional magnets, employ experimental synthesis and processing to engineer two-dimensional magnets, and apply magnetoelectric and magneto-optical characterizations to quantify the resultant magnetic properties. The research will elucidate the fundamental relationship between local atomic structures, crystalline structures and magnetic properties of emerging two-dimensional magnets, which could provide useful guidance for the design and optimization of low-dimensional magnetic structures for clean cooling technologies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
固态冷却方案可以潜在地避免在低于1 K的低温制冷中使用日益昂贵和稀缺的He 3。目前,几乎所有用于量子计算机、传感器和其他新技术运行的商业超低制冷方法都需要He 3。这个早期概念探索性研究资助(EAGER)项目将推进对磁性材料热释放过程的基本理解,从而为制造下一代固态制冷的磁性量子材料提供指导,促进纳米级热传输和冷却的基础物理学,并帮助开发新的冷却技术。当某些磁性材料在低温下磁化时,磁场的去除导致材料内曾经磁性有序的畴的随机化。在这些多磁畴的形成或排序期间,材料中的热能被磁畴吸收以重新定向它们的磁化,从而导致温度下降(即,冷却)。原子级薄的磁性材料可以被设计来控制和增强这些过程,从而为新兴的冷却设备开辟了未知的机会。这一努力将支持基础研究,以了解这些磁量子材料的修改,以实现有效的固态冷却,特别是在低于1 K的低温下。该技术可以缓解全球氦气短缺带来的挑战。高中生和传统上代表性不足的群体的学生将接受全面的培训,包括量子材料制造,材料建模和模拟,低温硬件工程和低温实验。这项研究将有助于使这些学生具备必要的知识和专业知识,作为未来量子科学和工程的劳动力。磁热效应在固态制冷方面具有巨大的潜力。然而,传统材料的磁热效应并不强,但如果能在磁相变的同时发生结构相变,则可以增强磁热效应。然而,诱导这些一级相变通常依赖于通过稀缺且昂贵的稀土元素基化合物对材料进行的成分改性。本研究旨在克服二维磁性材料的理解和控制方面的知识差距,以增强磁热效应。研究团队将应用第一原理材料模拟来理解二维磁体中的磁性-结构关系,采用实验合成和加工来设计二维磁体,并应用磁电和磁光表征来量化所得的磁性。这项研究将阐明局部原子结构、晶体结构和新兴二维磁体的磁性之间的基本关系,可为低-该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查进行评估,被认为值得支持的搜索.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Cheng Gong其他文献

The tolerable target temperature for bimaterial microcantilever array infrared imaging
双材料微悬臂梁阵列红外成像的容许目标温度
  • DOI:
    10.1016/j.optlastec.2012.05.034
  • 发表时间:
    2013-02
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Cheng Gong;Yuejin Zhao;Liquan Dong;Mei Hui
  • 通讯作者:
    Mei Hui
Duplex Metric Learning for Image Set Classification
用于图像集分类的双工度量学习
Tertiary Control of Islanded Microgrids Based on a Linearized ACOPF with Losses Compensation
基于带损耗补偿的线性 ACOPF 孤岛微电网三级控制
The Effects of Residential Greenspace on Avian Biodiversity in Beijing
北京居住区绿地对鸟类生物多样性的影响
  • DOI:
    10.1016/j.gecco.2020.e01223
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Shilin Xie;Xiaoke Wang;Weiqi Zhou;Tong Wu;Yuguo Qian;Fei Lu;Cheng Gong;He Zhao;Zhiyun Ouyang
  • 通讯作者:
    Zhiyun Ouyang
miRNA-154-5p Inhibits Proliferation, Migration and Invasion by Targeting E2F5 in Prostate Cancer Cell Lines
miRNA-154-5p 通过靶向 E2F5 抑制前列腺癌细胞系中的增殖、迁移和侵袭
  • DOI:
    10.1159/000445252
  • 发表时间:
    2016-04
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Zheng Yang;Zhu Chen;Ma Long;Shao Pengfei;Qin Chao;Li Pu;Cao Qiang;Ju Xiaobing;Cheng Gong;Zhu Qingyi;Gu Xiaojian;Hua Lixin
  • 通讯作者:
    Hua Lixin

Cheng Gong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Cheng Gong', 18)}}的其他基金

CAREER: Multiferroicity in van der Waals Heterostructures
职业:范德华异质结构的多铁性
  • 批准号:
    2340773
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Understanding and Controlling Magnetic Two-Dimensional Crystals
理解和控制磁性二维晶体
  • 批准号:
    2326944
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
  • 批准号:
    2409395
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345581
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345582
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345583
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333604
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
  • 批准号:
    2339062
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333603
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347623
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了