Everyday AI for Youth: Investigating Middle School Teacher Education, Classroom Implementation, and the Associated Student Learning Outcomes of an Innovative AI Curriculum

青少年的日常人工智能:调查中学教师教育、课堂实施以及创新人工智能课程的相关学生学习成果

基本信息

  • 批准号:
    2048746
  • 负责人:
  • 金额:
    $ 150万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-03-01 至 2024-12-31
  • 项目状态:
    已结题

项目摘要

Everyday Artificial Intelligence for Youth (EdAI) addresses the need to develop a diverse workforce with the knowledge and skills to work with Artificial Intelligence (AI). The ubiquity of AI technologies in industry and in daily life calls for accessible and age-appropriate AI preparation of all learners. Broadening participation in AI is important in ensuring that AI technologies of the future are founded on principles of inclusivity and equitability. In this project researchers at Massachusetts Institute of Technology and Boston College will recruit and prepare 40 middle school teachers from school districts across Florida, Illinois, and Virginia. Through partnerships with these districts and four youth serving organizations, STEAM Ahead, Boston College’s College Bound, Supercomputing Challenge, and CodeVA, the project will engage over 1200 youths in AI education and foster their interest in AI intensive industries of the future. The majority of the youths are from Black and Latinx families. The project will be built upon the Developing AI Literacy (DAILy) curriculum that interweaves AI concepts, ethics in AI, and AI career awareness. The curriculum has been previously pilot tested among middle schoolers in a summer program. The EdAI professional development (PD) program will take a multi-pronged approach offering an AI Book Club, Practicum, Teacher Network, and Hackathon. Researchers will investigate how this PD model supports teachers to learn, adopt, modify, and teach the DAILy curriculum in a wide range of classroom settings and how the teachers’ implementation of the curriculum impacts students’ learning. This project is funded by the Innovative Technology Experiences for Students and Teachers (ITEST) program, which supports projects that build understandings of practices, program elements, contexts, and processes contributing to increasing students' knowledge and interest in science, technology, engineering, and mathematics (STEM) and information and communication technology (ICT) careers.In this project, four research questions will be investigated: 1): How can we best prepare a variety of teachers to use an innovative AI curriculum? What supports are necessary for teachers as learners and implementers of the curriculum? 2) What teaching practices are effective in supporting students’ learning of AI and related ethics and career issues? 3) What is the impact of variation in teaching practices and implementation settings on student learning? and 4) How and to what extent do teacher-led implementations of the DAILy curriculum impact student knowledge and interest in AI and AI-related careers? A design-based research approach will be employed to iteratively refine the teacher professional development program and the associated AI learning activities for both in-person and online contexts. The project will also develop and validate measurements and assessments of teachers’ perceptions of and attitudes towards AI, learning of AI concepts, and self-efficacy in teaching AI. The research will utilize a mixed methods design and collect quantitative data using attitudes toward AI surveys and AI knowledge and skills assessments from teachers and students as well as qualitative data including observations of teaching practices and interviews of teachers about their experiences of teaching AI. The findings will inform the AI education field of issues specific to expanding Black and Hispanic/Latinx participation in school-based AI education activities. The deliverables from the project include the EdAI program model, the teacher professional development program, the research findings on teachers’ learning and teaching of AI, and the effectiveness of the curriculum when implemented by middle school teachers in classrooms.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
青年日常人工智能 (EdAI) 满足了培养具备人工智能 (AI) 知识和技能的多元化劳动力队伍的需求。人工智能技术在工业和日常生活中无处不在,要求所有学习者做好易于理解且适合年龄的人工智能准备。扩大对人工智能的参与对于确保未来的人工智能技术建立在包容性和公平原则的基础上非常重要。在这个项目中,麻省理工学院和波士顿学院的研究人员将从佛罗里达州、伊利诺伊州和弗吉尼亚州的学区招募和培养 40 名中学教师。通过与这些地区以及四个青年服务组织(STEAM Ahead、Boston College's College Bound、Supercomputing Challenge 和 CodeVA)的合作,该项目将吸引超过 1200 名青年参与人工智能教育,并培养他们对未来人工智能密集型产业的兴趣。大多数年轻人来自黑人和拉丁裔家庭。该项目将建立在发展人工智能素养(DAIly)课程的基础上,该课程将人工智能概念、人工智能道德和人工智能职业意识交织在一起。该课程此前已在暑期项目中在中学生中进行了试点测试。 EdAI 专业发展 (PD) 计划将采取多管齐下的方式,提供人工智能读书俱乐部、实习、教师网络和黑客马拉松。研究人员将研究这种 PD 模型如何支持教师在广泛的课堂环境中学习、采用、修改和教授 DAIly 课程,以及教师实施课程如何影响学生的学习。该项目由学生和教师创新技术体验 (ITEST) 计划资助,该计划支持加深对实践、计划元素、背景和流程的理解的项目,有助于增加学生对科学、技术、工程和数学 (STEM) 以及信息和通信技术 (ICT) 职业的知识和兴趣。在该项目中,将调查四个研究问题:1):我们如何才能最好地为各种教师使用创新人工智能做好准备 课程?作为课程的学习者和实施者,教师需要哪些支持? 2)哪些教学实践可以有效支持学生学习人工智能以及相关的道德和职业问题? 3) 教学实践和实施环境的变化对学生学习有何影响? 4) 教师主导的 DAILy 课程实施如何以及在多大程度上影响学生对人工智能和人工智能相关职业的知识和兴趣?将采用基于设计的研究方法来迭代完善教师专业发展计划以及相关的面对面和在线环境的人工智能学习活动。该项目还将开发和验证教师对人工智能的看法和态度、人工智能概念的学习以及人工智能教学的自我效能的测量和评估。该研究将采用混合方法设计和收集定量数据,使用教师和学生对人工智能调查和人工智能知识和技能评估的态度,以及定性数据,包括对教学实践的观察和对教师关于人工智能教学经验的采访。研究结果将为人工智能教育领域提供有关扩大黑人和西班牙裔/拉丁裔参与学校人工智能教育活动的具体问题的信息。该项目的成果包括 EdAI 项目模型、教师专业发展项目、教师人工智能学习和教学的研究成果,以及中学教师在课堂上实施课程的有效性。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,认为值得支持。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Online vs in-person professional learning communities: A qualitative comparison of teacher learning experiences
在线与面对面的专业学习社区:教师学习体验的定性比较
Ethics in Artificial Intelligence Education: Preparing Students to Become Responsible Consumers and Developers of AI.
人工智能教育中的道德:让学生成为负责任的人工智能消费者和开发者。
An Effectiveness Study of Teacher-Led AI Literacy Curriculum in K-12 Classrooms
K-12 课堂中教师主导的人工智能素养课程的有效性研究
Preparing teachers to teach artificial intelligence in classrooms: An exploratory study.
为教师在课堂上教授人工智能做好准备:一项探索性研究。
AI Book Club: An Innovative Professional Development Model for AI Education
AI读书俱乐部:人工智能教育创新的专业发展模式
  • DOI:
    10.1145/3478431.3499318
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lee, Irene;Zhang, Helen;Moore, Kate;Zhou, Xiaofei;Perret, Beatriz;Cheng, Yihong;Zheng, Ruiying;Pu, Grace
  • 通讯作者:
    Pu, Grace
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Irene Lee其他文献

Utilization of positional isotope exchange experiments to evaluate reversibility of ATP hydrolysis catalyzed by Escherichia coli Lon protease.
利用位置同位素交换实验评估大肠杆菌 Lon 蛋白酶催化的 ATP 水解的可逆性。
MIT Open Access Articles Children as creators, thinkers and citizens in an AI-driven future
麻省理工学院开放获取文章 人工智能驱动的未来中的儿童作为创造者、思想家和公民
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Safinah Ali;Daniella DiPaola;Irene Lee;Victor Sindato;Grace Kim;Ryan Blumofe;C. Breazeal
  • 通讯作者:
    C. Breazeal
Physiological enzymology: The next frontier in understanding protein structure and function at the cellular level.
生理酶学:在细胞水平上理解蛋白质结构和功能的下一个前沿。
RELACIÓN DE LA ESTRUCTURA DE LOS RECEPTORES NMDA CON SU FUNCIÓN EN LA RETINA
NMDA 视网膜功能
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Irene Lee;Ana María López
  • 通讯作者:
    Ana María López
DISASTER PSYCHIATRY IN CHILDREN & ADOLESCENTS
儿童灾难精神病学
  • DOI:
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. J. Child;Adol Psychiatr;Irene Lee
  • 通讯作者:
    Irene Lee

Irene Lee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Irene Lee', 18)}}的其他基金

Mechanism for the selection of undamaged physiological substrates by the ATP-dependent protease Lon
ATP依赖性蛋白酶Lon选择未受损生理底物的机制
  • 批准号:
    2210869
  • 财政年份:
    2022
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
EAGER: Developing AI Literacy Interventions to Teach Fundamental Concepts in AI
EAGER:开发人工智能素养干预措施来教授人工智能的基本概念
  • 批准号:
    2022502
  • 财政年份:
    2020
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
Making Sense of Models: Investigating Mechanistic Reasoning as a Bridge for Connecting 6th Grade Mathematics and Science Learning
理解模型:研究机械推理作为连接六年级数学和科学学习的桥梁
  • 批准号:
    1934126
  • 财政年份:
    2020
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
Activity Probes to Monitor ATP-Dependent Proteolysis
用于监测 ATP 依赖性蛋白水解作用的活性探针
  • 批准号:
    1507792
  • 财政年份:
    2015
  • 资助金额:
    $ 150万
  • 项目类别:
    Continuing Grant
Chemical Biology of Energy-Dependent Proteolysis in Mitochondria
线粒体能量依赖性蛋白水解的化学生物学
  • 批准号:
    1213175
  • 财政年份:
    2012
  • 资助金额:
    $ 150万
  • 项目类别:
    Continuing Grant
Strategies: GUTS y Girls
策略:胆量与女孩
  • 批准号:
    1031421
  • 财政年份:
    2010
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
Mechanism of ATP-Dependent Proteolysis by Lon Protease
Lon 蛋白酶的 ATP 依赖性蛋白水解机制
  • 批准号:
    0919631
  • 财政年份:
    2009
  • 资助金额:
    $ 150万
  • 项目类别:
    Continuing Grant
NSFAYS Project GUTS: Growing Up Thinking Scientifically
NSFAYS 项目 GUTS:科学思考成长
  • 批准号:
    0639637
  • 财政年份:
    2007
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant

相似国自然基金

联邦学习驱动下成渝地区职业教育AI产教协同的跨区域数据共享机制与培养方案优化要素机理研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
AI驱动药物研发的技术发展趋势及重庆技术创新路径选择战略研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
AI赋能职业教育:“智慧职教”平台教学视频核心知识抽取研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于AI 技术的高校网络舆情监测与治理路径研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
患者安全视角下医疗AI技术对医务人员风险感知的双刃剑机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于可穿戴设备与AI动态优化的阿尔茨海默病早期生活方式干预系统研发及效应研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
成渝交通一体化背景下的高速公路智慧管控系统:大数据驱动、AI预警与数智决策
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于AI的光谱-色度耦合动态调控系统技术研究及其在城乡建筑光环境优化中的应用
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
多模态下AI技术融合在教育创新中的应用与关键技术研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于职业教育和产学研协同的低成本专用大模型AI系统研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Empowering Youth in STEM and Technological Careers through AI-Enhanced Sustainable and Community-Focused Urban Gardening
通过人工智能增强的可持续和以社区为中心的城市园艺,赋予年轻人 STEM 和技术职业的能力
  • 批准号:
    2241766
  • 财政年份:
    2023
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
AI for the Workforce of Tomorrow: Attending to Ethics and Collaboration in Learning Artificial Intelligence for High School Aged Youth
面向未来劳动力的人工智能:高中青年学习人工智能时注意道德与协作
  • 批准号:
    2241576
  • 财政年份:
    2023
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
RAPID: DRL AI: Constructing Understandings of Generative AI and Machine Learning with High School Youth
RAPID:DRL AI:与高中生一起构建对生成式 AI 和机器学习的理解
  • 批准号:
    2335926
  • 财政年份:
    2023
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
SBIR Phase I: A mental health screening tool for youth using AI and game-based technology
SBIR 第一阶段:使用人工智能和游戏技术的青少年心理健康筛查工具
  • 批准号:
    2111686
  • 财政年份:
    2022
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
An AI-based mobile sensing approach to optimize clinical monitoring of anxiety among youth patients
基于人工智能的移动传感方法可优化青年患者焦虑的临床监测
  • 批准号:
    447698
  • 财政年份:
    2021
  • 资助金额:
    $ 150万
  • 项目类别:
    Operating Grants
An AI-based mobile sensing approach to optimize clinical monitoring of anxiety among youth patients
基于人工智能的移动传感方法可优化青年患者焦虑的临床监测
  • 批准号:
    451978
  • 财政年份:
    2021
  • 资助金额:
    $ 150万
  • 项目类别:
    Operating Grants
Autonomous AI to mitigate disparities for diabetic retinopathy screening in youth during and after COVID-19
自主人工智能可减少 COVID-19 期间和之后青年糖尿病视网膜病变筛查的差异
  • 批准号:
    10689400
  • 财政年份:
    2021
  • 资助金额:
    $ 150万
  • 项目类别:
Autonomous AI to mitigate disparities for diabetic retinopathy screening in youth during and after COVID-19
自主人工智能可减少 COVID-19 期间和之后青年糖尿病视网膜病变筛查的差异
  • 批准号:
    10598686
  • 财政年份:
    2021
  • 资助金额:
    $ 150万
  • 项目类别:
Fostering Computer Science and AI Learning through Youth-Led Conversational App Development Experiences
通过青年主导的对话式应用程序开发经验促进计算机科学和人工智能学习
  • 批准号:
    2048480
  • 财政年份:
    2021
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
Autonomous AI to mitigate disparities for diabetic retinopathy screening in youth during and after COVID-19
自主人工智能可减少 COVID-19 期间和之后青年糖尿病视网膜病变筛查的差异
  • 批准号:
    10309013
  • 财政年份:
    2021
  • 资助金额:
    $ 150万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了