Autonomous AI to mitigate disparities for diabetic retinopathy screening in youth during and after COVID-19
自主人工智能可减少 COVID-19 期间和之后青年糖尿病视网膜病变筛查的差异
基本信息
- 批准号:10309013
- 负责人:
- 金额:$ 49.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdultAffectAgeArtificial IntelligenceBlindnessCOVID-19COVID-19 pandemicCaringChildChildhoodChildhood diabetesClinicCommunitiesComplications of Diabetes MellitusComputer softwareConsensusCost SavingsDataDecision ModelingDetectionDiabetes MellitusDiabetic RetinopathyEarly DiagnosisEffectivenessEmergency SituationEvaluationExpert SystemsEyeFDA approvedFundus photographyFutureHealthHealth Services AccessibilityHealth TechnologyHealthcare SystemsHouseholdImprove AccessIncomeInfrastructureInstitutionInsulin-Dependent Diabetes MellitusInsuranceInternetInterventionLow incomeMedicaidMethodsMinorityMulticenter StudiesNon-Insulin-Dependent Diabetes MellitusOcular ProsthesisOphthalmic examination and evaluationOphthalmologistParticipantPatient-Focused OutcomesPatientsPediatricsPersonsPhasePilot ProjectsPopulationPrevalenceRandomizedRiskSafetyScreening ResultSiteSystemTechnologyTelemedicineTimeUnited States National Institutes of HealthVisitYouthadherence ratearmbehavioral economicscare outcomescontrol trialcostcost effectivecost effectivenessdiabeticdigital healthcaredisparity eliminationeconomic impactexperiencefollow-upglycemic controlhealth care deliveryhigh riskimprovedinnovationinnovative technologieslow socioeconomic statusmultidisciplinarynew technologypandemic diseasepoint of carepreventprospectiveracial biasresponseretinal imagingroutine careroutine screeningscreeningscreening guidelinessocialsocioeconomicsstandard of caresuccesstrial comparingunderserved community
项目摘要
Project Summary
COVID-19 has led to disruptions and delays in routine pediatric care. For children with diabetes who
see their diabetes team every 3 months, this has been reduced or transitioned to telemedicine due to COVID-
19. However, those without technology and internet capabilities, namely low income and minority youth, are
less likely to participate in telemedicine and may see their diabetes team less frequently during the pandemic.
Screening for diabetes complications, such as diabetic retinopathy (DR), is generally fulfilled by a separate visit
to an eye-care professional (ECP), and is also less likely to occur during COVID-19.
Diabetic retinopathy affects 4-15% of youth with type 1 and type 2 diabetes and is a leading cause of
blindness in adults as early as age 20. Yearly screening for DR is recommended, but only 35-72% of youth
undergo screening, with minority youth and children from lower socioeconomic backgrounds less likely to
undergo screening. Early detection of DR through screening prevents progression to vision loss. The current
standard of care for pediatric DR screening is referral to an ECP for a dilated eye exam. Recently, the FDA
approved the first autonomous artificial intelligence (AI) software that interprets retinal images taken with a
non-mydriatic fundus camera, providing an immediate result for DR screening at the point of care (POC) for
adults with diabetes. In a pilot study at our institution, we were the first to implement this technology in
pediatrics, demonstrating safety, effectiveness and equity, and cost-savings to the patient. We also found that
minority youth, those with lower household income and Medicaid insurance were less likely to undergo
recommended screening, yet were more likely to have DR. This is likely to worsen due to the disparate effects
of COVID-19.
We hypothesize that implementing POC autonomous AI in the diabetes care setting will
increase DR screening rates in youth with diabetes, mitigate disparities in access to screening, and be
cost-effective to the health care system now and beyond the COVID-19 pandemic. In this proposal, we
will first determine (Aim1) in a randomized control trial at two clinic sites if autonomous AI increases screening
compared to ECP, and if those who screen positive by AI are more likely to go for follow-up at the ECP. In the
second phase of this proposal (Aim2) we will perform a prospective observational trial of AI screening to
determine if AI mitigates disparities in screening, and improves the proportion of at-risk, minority and low
income, youth who go for follow-up if their AI screen is positive. In Aim 3, we will use a decision model to
determine if AI is cost-effective and cost-savings to the health care system. If AI is shown to increase
screening rates while mitigating disparities in access to care, it has the potential to reshape screening methods
now and in the future.
项目摘要
新冠肺炎导致常规儿科护理中断和延误。适用于患有糖尿病的儿童
每3个月见一次他们的糖尿病团队,由于COVID,这已经减少或过渡到远程医疗-
19.然而,那些没有技术和互联网能力的人,即低收入和少数族裔青年,是
不太可能参加远程医疗,在大流行期间可能不太频繁地看到他们的糖尿病团队。
糖尿病并发症的筛查,如糖尿病视网膜病变(DR),通常通过单独的检查来完成
到眼部护理专业人员(ECP),也较少发生在新冠肺炎期间。
糖尿病视网膜病变影响4%-15%患有1型和2型糖尿病的年轻人,是导致
成年人早在20岁就失明。建议每年进行DR筛查,但只有35%-72%的年轻人
接受筛查,少数族裔青年和社会经济背景较低的儿童不太可能
接受筛查。通过筛查及早发现DR可防止进展为视力丧失。海流
儿科DR筛查的标准是转诊到ECP进行扩眼检查。最近,FDA
批准了第一个自主人工智能(AI)软件,可以解释用
非散瞳眼底相机,为在护理点(POC)进行DR筛查提供即时结果
患有糖尿病的成年人。在我们机构的一项试点研究中,我们是第一个在
儿科,向患者展示安全性、有效性和公平性,并节省成本。我们还发现,
少数族裔青年、家庭收入较低的人和医疗补助保险的人不太可能接受
推荐的筛查,但更有可能患有Dr.由于不同的影响,这种情况可能会恶化
新冠肺炎。
我们假设,在糖尿病护理环境中实施POC自主人工智能将
提高青年糖尿病患者的DR筛查率,缓解筛查机会的差距,并
现在和超越新冠肺炎大流行,对卫生保健系统具有成本效益。在这项提案中,我们
将首先在两个临床地点的随机对照试验中确定(Aim1)自主人工智能是否增加筛查
与ECP相比,如果那些通过人工智能筛查呈阳性的人更有可能在ECP进行跟进。在
本计划的第二阶段(AIM2)我们将进行人工智能筛查的前瞻性观察性试验,以
确定人工智能是否缩小了筛查中的差异,并提高了高危、少数和低风险人群的比例
收入,年轻人谁去跟进,如果他们的人工智能屏幕是积极的。在目标3中,我们将使用决策模型来
确定人工智能对医疗保健系统是否具有成本效益和成本节约。如果显示人工智能增加
筛查率虽然减少了获得医疗保健的差距,但它有可能重塑筛查方法
无论是现在还是将来。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Risa Michelle Wolf其他文献
Risa Michelle Wolf的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Risa Michelle Wolf', 18)}}的其他基金
Autonomous AI to mitigate disparities for diabetic retinopathy screening in youth during and after COVID-19
自主人工智能可减少 COVID-19 期间和之后青年糖尿病视网膜病变筛查的差异
- 批准号:
10689400 - 财政年份:2021
- 资助金额:
$ 49.48万 - 项目类别:
Autonomous AI to mitigate disparities for diabetic retinopathy screening in youth during and after COVID-19
自主人工智能可减少 COVID-19 期间和之后青年糖尿病视网膜病变筛查的差异
- 批准号:
10598686 - 财政年份:2021
- 资助金额:
$ 49.48万 - 项目类别:
相似海外基金
Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
- 批准号:
MR/Z503605/1 - 财政年份:2024
- 资助金额:
$ 49.48万 - 项目类别:
Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 49.48万 - 项目类别:
Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 49.48万 - 项目类别:
Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
- 批准号:
24K12150 - 财政年份:2024
- 资助金额:
$ 49.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
$ 49.48万 - 项目类别:
Standard Grant
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
$ 49.48万 - 项目类别:
Discovery Early Career Researcher Award
Laboratory testing and development of a new adult ankle splint
新型成人踝关节夹板的实验室测试和开发
- 批准号:
10065645 - 财政年份:2023
- 资助金额:
$ 49.48万 - 项目类别:
Collaborative R&D
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 49.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
$ 49.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 49.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)