Multiphase Metabolic Modeling of Biochemical Producing Bacterial Communities in Bubble Column Reactors
鼓泡塔反应器中生化生产细菌群落的多相代谢模型
基本信息
- 批准号:2048757
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-15 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Development of cost-effective technologies for sustainable production of commodity fuels and chemicals remains a paramount challenge for the United States. Bacteria-based chemical production represents an alternative to petrochemical processes due to the microbes’ evolved ability to utilize diverse feedstocks and synthesize a broad array of biochemicals. However, the effectiveness of microbial systems has only been demonstrated at large scale for a limited number of applications, such as conversion of corn-derived sugar to the fuel additive ethanol. To succeed in the marketplace, microbial systems must offer more flexibility with respect to the feedstock they consume as well as the biochemicals they produce. Industrial waste gases rich in CO and CO2 represent an abundant and cheap source of carbon for upgrading to more valuable chemicals. Over the past decade, gas fermentation with CO2-consuming (acetogenic) bacteria has been shown to be a promising technology for large-scale conversion of such waste gases to ethanol. However, gas conversion to more valuable chemical products is considerably more challenging. The goal of this project is to develop the gas fermentation process simulation and optimization technology necessary to advance microbial systems for large-scale production of platform chemicals, the building blocks of a wide range of chemical products. The proposed research will significantly advance a novel microbial paradigm for conversion of cheap waste gases into value-added products by focusing on critical process systems engineering challenges. The research team will recruit women and URM students into the project through the NSF-sponsored Northeast Alliance in Minority and Graduate Education and the Professoriate program at UMass.Large-scale gas fermentation requires specialized bubble column reactor technologies and sophisticated operating strategies to maintain desirable multiphase hydrodynamics, achieve high gas-liquid mass transfer rates, minimize the inhibitory effects of dissolved gases and synthesized byproducts on cellular growth, achieve high cell densities, and ensure high volumetric productivity over a range of feed conditions. While bubble column reactors have been extensively investigated for CO fermentation, studies have been limited to acetogen monocultures and existing process engineering challenges have received very little attention. We have been developing a bubble column modeling approach based on combining genome-scale stoichiometric models of microbial metabolism with multiphase transport equations governing column hydrodynamics. In this project, these sophisticated models consisting of linear programs (LPs) and partial differential equations (PDEs) will be utilized to develop dynamic process modeling and optimization strategies for coculture bubble column reactors. Our target is the conversion of CO-rich gas streams containing CO2 and/or H2 to the platform chemicals butyrate and 2,3-butanediol. The proposed research has three specific aims: (1) Perform monoculture and coculture continuous-flow stirred tank reactor experiments with the acetogen Clostridium autoethanogenum and computationally identify promising gut bacteria by quantifying their metabolic activity; (2) Develop dynamic models of bubble column bioreactors for in silico investigation of coculture stability and performance for different gut bacteria paired with C. autoethanogenum; and (3) Perform rigorous optimization of the most promising coculture systems to determine dynamic startup and steady-state operating policies to maximize volumetric productivity. Collectively, the three aims will yield innovations in bioreactor process engineering through the systematic development of optimization approaches for LP-PDE models and in gas fermentation for renewable chemical production through the integrated development of dynamic modeling and optimization technologies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
开发具有成本效益的可持续生产商品燃料和化学品的技术仍然是美国面临的最大挑战。基于细菌的化学品生产代表了石油化工工艺的替代方案,这是由于微生物进化出的利用不同原料和合成各种生物化学品的能力。然而,微生物系统的有效性仅在有限数量的应用中被大规模证明,例如将玉米衍生的糖转化为燃料添加剂乙醇。为了在市场上取得成功,微生物系统必须在它们消耗的原料以及它们生产的生物化学品方面提供更大的灵活性。富含CO和CO2的工业废气是一种丰富而廉价的碳源,可用于升级为更有价值的化学品。在过去的十年中,气体发酵与CO2消耗(产乙酸)细菌已被证明是一个有前途的技术,大规模转化这些废气为乙醇。然而,将天然气转化为更有价值的化学产品更具挑战性。该项目的目标是开发必要的气体发酵过程模拟和优化技术,以推进微生物系统大规模生产平台化学品,广泛的化学产品的基石。拟议的研究将通过关注关键工艺系统工程挑战,显着推进一种新的微生物范式,将廉价废气转化为增值产品。研究小组将通过NSF赞助的少数民族和研究生教育东北联盟以及麻省大学的教授计划招募女性和URM学生参与该项目。大规模气体发酵需要专门的鼓泡塔反应器技术和复杂的操作策略来维持理想的多相流体力学,实现高的气液传质速率,最小化溶解气体和合成副产物对细胞生长的抑制作用,实现高细胞密度,并确保在一系列进料条件下的高体积生产率。虽然鼓泡塔反应器已被广泛研究的CO发酵,研究已被限制到产乙酸菌的单一文化和现有的工艺工程的挑战已经得到很少的关注。我们一直在开发一个鼓泡塔建模方法的基础上相结合的基因组规模的微生物代谢的化学计量模型与多相输运方程柱流体力学。在这个项目中,这些复杂的模型组成的线性规划(LP)和偏微分方程(PDE)将被用来开发动态过程建模和共培养鼓泡塔反应器的优化策略。我们的目标是将含有CO2和/或H2的富CO气流转化为平台化学品丁酸盐和2,3-丁二醇。该研究有三个具体目标:(1)用产乙酸梭菌进行单培养和共培养连续流搅拌釜反应器实验,并通过定量其代谢活性来计算识别有前途的肠道细菌;(2)开发鼓泡塔生物反应器的动态模型,用于计算机研究不同肠道细菌与C.自产乙醇菌;和(3)对最有希望的共培养系统进行严格优化,以确定动态启动和稳态操作策略,从而使体积生产率最大化。总的来说,这三个目标将通过系统地开发LP的优化方法,在生物反应器过程工程中产生创新,PDE模型和气体发酵,通过动态建模和优化技术的综合开发,用于可再生化学品生产。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查进行评估,被认为值得支持的搜索.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Henson其他文献
Foliar chemistry of juvenile <em>Eucalyptus grandis</em> clones does not predict chemical defence in maturing ramets
- DOI:
10.1016/j.foreco.2010.05.034 - 发表时间:
2010-07-30 - 期刊:
- 影响因子:
- 作者:
Ian R. Wallis;Helen J. Smith;Martin L. Henery;Michael Henson;William J. Foley - 通讯作者:
William J. Foley
Interactive visibility ordering and transparency computations among geometric primitives in complex environments
复杂环境中几何图元之间的交互式可见性排序和透明度计算
- DOI:
10.1145/1053427.1053435 - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
N. Govindaraju;Michael Henson;M. Lin;Dinesh Manocha - 通讯作者:
Dinesh Manocha
Introduction of a Novel GH Auto-Injector for Once-weekly Administration of TransCon hGH
- DOI:
10.1016/j.pedn.2020.02.028 - 发表时间:
2020-05-01 - 期刊:
- 影响因子:
- 作者:
Kimberly Walsh;Donna Campbell;Joe Permuy;Michael Henson;Larry Rodriguez;Brittany Machus;April Shiver;Katharine Smith - 通讯作者:
Katharine Smith
Michael Henson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Henson', 18)}}的其他基金
BBSRC-NSF/BIO: The impact of public vs private metabolism on the stability of microbial communities within natural hosts
BBSRC-NSF/BIO:公共与私人新陈代谢对自然宿主内微生物群落稳定性的影响
- 批准号:
2030087 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
GOALI: Development of Spatiotemporal Metabolic Models for Syngas Fermentation in Industrial Bubble Column Reactors
GOALI:工业鼓泡塔反应器中合成气发酵时空代谢模型的开发
- 批准号:
1511346 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
The Third International Conference on Foundations of Systems Biology in Engineering (FOSBE 2009)
第三届工程系统生物学基础国际会议 (FOSBE 2009)
- 批准号:
0901207 - 财政年份:2009
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
GOALI: Integrated Product and Process Design for Emulsified Products
GOALI:乳化产品的集成产品和工艺设计
- 批准号:
0730795 - 财政年份:2007
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Research Conference: Chemical Process Control VII
研究会议:化学过程控制VII
- 批准号:
0451082 - 财政年份:2005
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
GOALI: Low-Order Dynamic Modeling and Nonlinear Model Predictive Control of Cryogenic Gas Separation Plants
GOALI:低温气体分离装置的低阶动态建模和非线性模型预测控制
- 批准号:
0241211 - 财政年份:2002
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Optimal Membrane System Design for Multicomponent Gas Separations
多组分气体分离的最佳膜系统设计
- 批准号:
9817298 - 财政年份:1999
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: Nonlinear Output Feedback Control of Constrained Multivariable Processes
职业:约束多变量过程的非线性输出反馈控制
- 批准号:
9501368 - 财政年份:1995
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似国自然基金
丝氨酸/甘氨酸/一碳代谢网络(SGOC metabolic network)调控炎症性巨噬细胞活化及脓毒症病理发生的机制研究
- 批准号:81930042
- 批准年份:2019
- 资助金额:305 万元
- 项目类别:重点项目
相似海外基金
CyberGut: towards personalized human-microbiome metabolic modeling for precision health and nutrition
CyberGut:针对精准健康和营养的个性化人类微生物代谢模型
- 批准号:
10827347 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Genetic Modeling of Diet, NFkB, and Metabolic Interactions
饮食、NFkB 和代谢相互作用的遗传建模
- 批准号:
10501274 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Deciphering vitiligo through genomics and metabolic modeling
通过基因组学和代谢模型解读白癜风
- 批准号:
573939-2022 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
University Undergraduate Student Research Awards
CyberGut: towards personalized human-microbiome metabolic modeling for precision health and nutrition
CyberGut:针对精准健康和营养的个性化人类微生物代谢模型
- 批准号:
10502912 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Genetic Modeling of Diet, NFkB, and Metabolic Interactions
饮食、NFkB 和代谢相互作用的遗传建模
- 批准号:
10665780 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
CyberGut: towards personalized human-microbiome metabolic modeling for precision health and nutrition
CyberGut:针对精准健康和营养的个性化人类微生物代谢模型
- 批准号:
10654052 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Predictive Metabolic Network Modeling of Nitrogen- and Methane-Cycling Microorganisms
氮循环和甲烷循环微生物的预测代谢网络模型
- 批准号:
RGPIN-2019-04399 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Computational modeling of the metabolic pathways: effect of aging
代谢途径的计算模型:衰老的影响
- 批准号:
576868-2022 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
University Undergraduate Student Research Awards
Predictive Metabolic Network Modeling of Nitrogen- and Methane-Cycling Microorganisms
氮循环和甲烷循环微生物的预测代谢网络模型
- 批准号:
RGPIN-2019-04399 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Transitions: Modeling microbial community metabolic interactions under extreme conditions
转变:模拟极端条件下微生物群落代谢相互作用
- 批准号:
2118274 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant