Collaborative Research: Optimal Parental Leave Policies in the Presence of Statistical Discrimination and Child Development

合作研究:存在统计歧视和儿童发展的情况下的最佳育儿假政策

基本信息

项目摘要

This research project will use large data sets and modern economic theory and measurement methods to investigate the best parental leave policies for the US. It develops and tests a sophisticated theory of parental leave policy that accounts for how households and businesses make decisions about labor supply and demand as well as whether and how many children to have, taking into consideration government parental leave policies. This model provides a formal economic framework for analyzing arguments on several sides of the debate. Rising female workforce participation and reduction in gender gaps in schooling and earnings are some of the most important changes in labor markets over the past few decades in high income countries. While several competing parental leave policies have been proposed for the United States, there is not much research to guide which of the competing proposals will be best for the United States. In addition to studying the best parental policy for the US, the project will also train graduate and undergraduate students in cutting-edge economic research. The results of this research project will provide guidance on how best to establish efficient parental leave policies for the US, thus improving the operations of the labor market. It will also help to establish the US as a global leader in parental leave policies.There is a large empirical literature on parental leave policies; however the evidence does not provide a unique verdict on the efficacy of these policies. On the one hand, these policies may foster gender equity and child development by enabling working mothers to combine careers and motherhood. On the other hand, these policies may have long-term negative consequences for women as they may inhibit women from building up their careers due to losses in work experience. This project addresses the optimal design of parental leave policies and various ways of funding them by presenting a theory of how households make decisions regarding fertility, labor participation and the allocation of resources, how leave policies affect these decisions, and how profit-maximizing firms respond to these policies. The project provides a framework for the assessment of the optimality of paid family leave policies combining quasi-experimental policy variation with an explicit, structural modeling of the mechanisms through which female employees and their employers may respond to these interventions. Unlike earlier research, this research considers statistical discrimination, household bargaining, and child development together in a general equilibrium model of the labor market. The semi-parametric, structural difference-in-difference approach of the project facilitates rigorous testing of the various mechanisms through which both sides of the market respond. The results of this research project will provide guidance on how best to establish parental leave policies, thus improving the operations of the labor market. It will also help to establish the US as a global leader in parental leave policies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该研究项目将使用大量数据集和现代经济理论和测量方法来调查美国最佳的育儿假政策。 它开发和测试了一个复杂的育儿假政策理论,该理论考虑到政府的育儿假政策,解释了家庭和企业如何决定劳动力供求以及是否要孩子和生多少孩子。这个模型提供了一个正式的经济学框架来分析辩论中不同方面的论点。 女性劳动力参与率的提高以及教育和收入方面的性别差距的缩小是过去几十年来高收入国家劳动力市场的一些最重要变化。 虽然已经为美国提出了几项相互竞争的育儿假政策,但没有太多研究来指导哪些相互竞争的提案最适合美国。除了研究美国的最佳父母政策外,该项目还将培训研究生和本科生进行尖端经济研究。 该研究项目的结果将为美国如何制定有效的育儿假政策提供指导,从而改善劳动力市场的运作。 这也将有助于美国成为育儿假政策的全球领导者。有大量关于育儿假政策的实证文献;然而,证据并没有提供关于这些政策有效性的唯一结论。一方面,这些政策可以通过使职业母亲能够联合收割机兼顾职业和母性,促进两性平等和儿童发展。另一方面,这些政策可能会对妇女产生长期的负面影响,因为它们可能会因失去工作经验而阻碍妇女发展自己的事业。 本项目通过提出家庭如何在生育率、劳动参与和资源分配方面做出决定,休假政策如何影响这些决定,以及利润最大化的企业如何应对这些政策的理论,来解决育儿假政策的最佳设计和各种资助方式。该项目为评估带薪家事假政策的最佳性提供了一个框架,将准实验性政策变化与女雇员及其雇主可能对这些干预措施作出反应的机制的明确结构模型相结合。 与以往的研究不同,本研究将统计歧视、家庭谈判和儿童发展纳入劳动力市场的一般均衡模型。该项目的半参数、结构性差异方法有助于对市场双方作出反应的各种机制进行严格测试。该研究项目的结果将为如何最好地制定育儿假政策提供指导,从而改善劳动力市场的运作。 该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andres Hincapie其他文献

Andres Hincapie的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Mechanics of Optimal Biomimetic Torene Plates and Shells with Ultra-high Genus
合作研究:超高属度最优仿生Torene板壳力学
  • 批准号:
    2323415
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrating Optimal Function and Compliant Mechanisms for Ubiquitous Lower-Limb Powered Prostheses
合作研究:将优化功能和合规机制整合到无处不在的下肢动力假肢中
  • 批准号:
    2344765
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Can Irregular Structural Patterns Beat Perfect Lattices? Biomimicry for Optimal Acoustic Absorption
合作研究:不规则结构模式能否击败完美晶格?
  • 批准号:
    2341950
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrating Optimal Function and Compliant Mechanisms for Ubiquitous Lower-Limb Powered Prostheses
合作研究:将优化功能和合规机制整合到无处不在的下肢动力假肢中
  • 批准号:
    2344766
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Mechanics of Optimal Biomimetic Torene Plates and Shells with Ultra-high Genus
合作研究:超高属度最优仿生Torene板壳力学
  • 批准号:
    2323414
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Can Irregular Structural Patterns Beat Perfect Lattices? Biomimicry for Optimal Acoustic Absorption
合作研究:不规则结构模式能否击败完美晶格?
  • 批准号:
    2341951
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER--Evaluation of Optimal Mesonetwork Design for Monitoring and Predicting North American Monsoon (NAM) Convection Using Observing System Simulation
合作研究:EAGER——利用观测系统模拟监测和预测北美季风(NAM)对流的最佳中观网络设计评估
  • 批准号:
    2308410
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: ECCS: Small: Personalized RF Sensing: Learning Optimal Representations of Human Activities and Ethogram on the Fly
合作研究:ECCS:小型:个性化射频传感:学习人类活动的最佳表示和动态行为图
  • 批准号:
    2233503
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Parabolic Monge-Ampère Equations, Computational Optimal Transport, and Geometric Optics
合作研究:抛物线 Monge-AmpeÌre 方程、计算最优传输和几何光学
  • 批准号:
    2246606
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: An Optimal Algorithm for Orthogonal Eigenvectors of Symmetric Tridiagonals
协作研究:对称三对角线正交特征向量的最优算法
  • 批准号:
    2309596
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了