Collaborative Research:CNS Core:Small:Towards Efficient Cloud Services
合作研究:CNS核心:小型:迈向高效的云服务
基本信息
- 批准号:2050007
- 负责人:
- 金额:$ 24.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-19 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Cloud computing frameworks enable a wide range of services while sharing computation resources and infrastructure costs. To achieve these benefits, cloud computing frameworks rely on layers of abstractions to reduce the complexity of distributed and heterogeneous computational infrastructure. Abstractions hide resource management complexities and improve programmability. However, abstractions make cloud frameworks less observable, resulting in various forms of inefficiencies. This project will address the challenges of practical cloud monitoring techniques to guide cloud application development and system design.This project will explore the inefficiency patterns in cloud computing infrastructures and applications. More specifically, it will provide novel measurement techniques to enable monitoring these inefficiencies across the cloud layers of abstraction. Additionally, the project will develop tools that will provide actionable insights for high-performance cloud frameworks and application development. This project has three thrusts. First, it will measure language-level abstractions for intra-application inefficiencies. Second, it will explore the inefficient communication patterns among microservices for inter-service optimization. Third, it will develop tools to analyze inefficiencies in the entire stack of cloud software layers of abstraction.This project will bridge the knowledge gap between application developers and system designers to provide more efficient cloud environments. It will advance the state-of-the-art cloud monitoring techniques and address the current and future challenges in the cloud computing community. The tools developed from this project will have broad interest from industry, research institutes, and laboratories for efficient code execution and high system throughput. Furthermore, the project will disseminate the obtained knowledge through hands-on training sessions and tutorials. Finally, the project will facilitate curriculum development with a particular focus on involving minority and under-represented students.The project will maintain a website at https://www.probir.info/cloudprof. The website will host all the project outcomes, including the publications, open-source code, toolkits, datasets, documentation, and tutorials. The website will be accessible to the public throughout the project lifetime and beyond.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
云计算框架在共享计算资源和基础设施成本的同时实现了广泛的服务。为了实现这些好处,云计算框架依赖于抽象层来降低分布式和异构计算基础设施的复杂性。抽象隐藏了资源管理的复杂性并提高了可编程性。然而,抽象使得云框架不太可观察,导致各种形式的效率低下。该项目将解决实际云监控技术的挑战,以指导云应用程序开发和系统设计。该项目将探索云计算基础设施和应用程序中的低效率模式。更具体地说,它将提供新的测量技术,以便能够跨云抽象层监控这些低效率。此外,该项目还将开发工具,为高性能云框架和应用程序开发提供可操作的见解。这个项目有三个重点。首先,它将测量应用程序内部效率低下的语言级抽象。其次,它将探索微服务之间的低效通信模式,以实现服务间的优化。第三,它将开发工具来分析整个云软件抽象层堆栈中的低效性。该项目将弥合应用程序开发人员和系统设计人员之间的知识差距,以提供更高效的云环境。它将推进最先进的云监控技术,并解决云计算社区当前和未来的挑战。从这个项目开发的工具将有广泛的兴趣,从行业,研究机构和实验室的高效代码执行和高系统吞吐量。此外,该项目将通过实践培训和教程传播所获得的知识。最后,该项目将促进课程编制,特别注重让少数民族和代表性不足的学生参与,并将维持一个网站https://www.probir.info/cloudprof。该网站将托管所有项目成果,包括出版物、开源代码、工具包、数据集、文档和教程。该网站将在整个项目生命周期及以后向公众开放。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Toward Efficient Interactions between Python and Native Libraries
实现 Python 和本机库之间的高效交互
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Tan, J;Chen, C;Liu, Z;Ren, R;Song, R;Shen, X;Liu, X
- 通讯作者:Liu, X
OJXPerf: featherlight object replica detection for Java programs
OJXPerf:Java 程序的轻量级对象副本检测
- DOI:10.1145/3510003.3510083
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Li, Bolun;Xu, Hao;Zhao, Qidong;Su, Pengfei;Chabbi, Milind;Jiao, Shuyin;Liu, Xu
- 通讯作者:Liu, Xu
DroidPerf: Profiling Memory Objects on Android Devices
DroidPerf:分析 Android 设备上的内存对象
- DOI:10.1145/3570361.3592503
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Li, Bolun;Zhao, Qidong;Jiao, Shuyin;Liu, Xu
- 通讯作者:Liu, Xu
DJXPerf: Identifying Memory Inefficiencies via Object-Centric Profiling for Java
- DOI:10.1145/3579990.3580010
- 发表时间:2021-04
- 期刊:
- 影响因子:0
- 作者:Bolun Li;Pengfei Su;Milind Chabbi;Shuyin Jiao;Xu Liu
- 通讯作者:Bolun Li;Pengfei Su;Milind Chabbi;Shuyin Jiao;Xu Liu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jiajia Li其他文献
Routing Schemes in Software-Defined Vehicular Networks: Design, Open Issues and Challenges
软件定义车辆网络中的路由方案:设计、开放问题和挑战
- DOI:
10.1109/mits.2019.2953557 - 发表时间:
2021 - 期刊:
- 影响因子:3.6
- 作者:
Liang Zhao;Ahmed Al-Dubai;Albert Y. Zomaya;Geyong Min;Ammar Hawbani;Jiajia Li - 通讯作者:
Jiajia Li
TSC2 nonsense mutation in angiomyolipoma with epithelial cysts: a case report and literature review
血管平滑肌脂肪瘤伴上皮囊肿的 TSC2 无义突变一例报告及文献复习
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:4.7
- 作者:
Hong Song;Guoliang Mao;Nanlin Jiao;Jiajia Li;Wanwan Gao;Yinhua Liu;Linming Lu - 通讯作者:
Linming Lu
Facile preparation of Cu3BiS3 nanorods film through a solution dip-coating process
通过溶液浸涂工艺轻松制备 Cu3BiS3 纳米棒薄膜
- DOI:
10.1007/s10854-017-7716-6 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Jiajia Li;Xiuxun Han;Yun Zhao;Jian Li;Min Wang;Chen Dong;Zhaomin Hao - 通讯作者:
Zhaomin Hao
Poly-ADP-ribose polymerase (PARP) inhibitors and ovarian function[J].Biomed Pharmacother
聚ADP核糖聚合酶(PARP)抑制剂与卵巢功能[J].Biomed Pharmacother
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Jiajia Li;Qingchao Li;Lingyi Zhang;Songling Zhang;Yun Dai - 通讯作者:
Yun Dai
Structural, electronic and optical properties of famatinite and enargite Cu3SbS4 under pressure: A theoretical investigation
压力下铁铜矿和硫铜矿 Cu3SbS4 的结构、电子和光学性质:理论研究
- DOI:
10.1002/pssb.201600608 - 发表时间:
2017-05 - 期刊:
- 影响因子:1.6
- 作者:
Jian Li;Xiuxun Han;Jiajia Li;Yun Zhao;Changzeng Fan - 通讯作者:
Changzeng Fan
Jiajia Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jiajia Li', 18)}}的其他基金
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
- 批准号:
2316201 - 财政年份:2023
- 资助金额:
$ 24.98万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: Planning: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:规划:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
- 批准号:
2247309 - 财政年份:2022
- 资助金额:
$ 24.98万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: Planning: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:规划:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
- 批准号:
2217010 - 财政年份:2022
- 资助金额:
$ 24.98万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: SMALL: DrGPU: Optimizing GPU Programs via Novel Profiling Techniques
合作研究:CNS Core:SMALL:DrGPU:通过新颖的分析技术优化 GPU 程序
- 批准号:
2125813 - 财政年份:2021
- 资助金额:
$ 24.98万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CNS Core: Medium: Reconfigurable Kernel Datapaths with Adaptive Optimizations
协作研究:CNS 核心:中:具有自适应优化的可重构内核数据路径
- 批准号:
2345339 - 财政年份:2023
- 资助金额:
$ 24.98万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2230945 - 财政年份:2023
- 资助金额:
$ 24.98万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
- 批准号:
2225578 - 财政年份:2023
- 资助金额:
$ 24.98万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Movement of Computation and Data in Splitkernel-disaggregated, Data-intensive Systems
合作研究:CNS 核心:媒介:Splitkernel 分解的数据密集型系统中的计算和数据移动
- 批准号:
2406598 - 财政年份:2023
- 资助金额:
$ 24.98万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Small: SmartSight: an AI-Based Computing Platform to Assist Blind and Visually Impaired People
合作研究:中枢神经系统核心:小型:SmartSight:基于人工智能的计算平台,帮助盲人和视障人士
- 批准号:
2418188 - 财政年份:2023
- 资助金额:
$ 24.98万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Creating An Extensible Internet Through Interposition
合作研究:CNS核心:小:通过介入创建可扩展的互联网
- 批准号:
2242503 - 财政年份:2023
- 资助金额:
$ 24.98万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Adaptive Smart Surfaces for Wireless Channel Morphing to Enable Full Multiplexing and Multi-user Gains
合作研究:CNS 核心:小型:用于无线信道变形的自适应智能表面,以实现完全复用和多用户增益
- 批准号:
2343959 - 财政年份:2023
- 资助金额:
$ 24.98万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
- 批准号:
2343863 - 财政年份:2023
- 资助金额:
$ 24.98万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2341378 - 财政年份:2023
- 资助金额:
$ 24.98万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Innovating Volumetric Video Streaming with Motion Forecasting, Intelligent Upsampling, and QoE Modeling
合作研究:CNS 核心:中:通过运动预测、智能上采样和 QoE 建模创新体积视频流
- 批准号:
2409008 - 财政年份:2023
- 资助金额:
$ 24.98万 - 项目类别:
Continuing Grant