Collaborative Research: CNS Core: SMALL: DrGPU: Optimizing GPU Programs via Novel Profiling Techniques
合作研究:CNS Core:SMALL:DrGPU:通过新颖的分析技术优化 GPU 程序
基本信息
- 批准号:2125813
- 负责人:
- 金额:$ 24.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Graphics Processing Units (GPUs) have become common in modern computing systems. However, it remains challenging to efficiently program GPUs due to the complexity of architectures, programming models, and algorithm designs. This project aims to develop a framework to identify performance inefficiencies in GPU applications and provide intuitive guidance for code optimization. The intellectual merits include three novel analysis techniques: (a) multi-scale analysis to understand inefficiencies inside individual GPU kernels, (b) coordinated analysis to measure inefficient data movement between devices, and (c) differential analysis to view inefficiencies across different runs with different execution configurations. The combination of these three analyses will give a complete performance picture of GPU applications and help developers obtain the bare-metal performance in modern and emerging GPUs.This project will bridge the knowledge gap between GPU hardware architectures and software developers. The success of this project will enable significant enhancement of computing efficiency for production code, and hence help maintain a sustained advancement of various domains, e.g., data analytics, high-performance computing, and artificial intelligence. The proposed framework will draw broad interest from industry, research institutes, and the Department of Energy national laboratories for improving their code bases and increasing system throughputs. Moreover, the outcome of this project will be integrated into curriculum planning and educational activities, from which students can directly benefit.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
图形处理单元(GPU)在现代计算系统中已经变得普遍。然而,由于架构、编程模型和算法设计的复杂性,高效地对GPU进行编程仍然具有挑战性。该项目旨在开发一个框架,以识别GPU应用程序中的性能低下,并为代码优化提供直观的指导。智能优势包括三种新颖的分析技术:(a)多尺度分析,以了解单个GPU内核内部的效率低下,(B)协调分析,以衡量设备之间的低效数据移动,以及(c)差异分析,以查看不同运行与不同执行配置之间的效率低下。这三个分析的结合将给出GPU应用程序的完整性能图,并帮助开发人员获得现代和新兴GPU的裸金属性能。该项目将弥合GPU硬件架构和软件开发人员之间的知识差距。这个项目的成功将大大提高生产代码的计算效率,从而有助于保持各个领域的持续发展,例如,数据分析、高性能计算和人工智能。拟议的框架将引起工业界、研究机构和能源部国家实验室的广泛兴趣,以改进其代码库并提高系统吞吐量。此外,该项目的成果将被整合到课程规划和教育活动中,学生可以直接从中受益。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
ValueExpert: exploring value patterns in GPU-accelerated applications
- DOI:10.1145/3503222.3507708
- 发表时间:2022-02
- 期刊:
- 影响因子:0
- 作者:K. Zhou;Yueming Hao;J. Mellor-Crummey;Xiaozhu Meng;Xu Liu
- 通讯作者:K. Zhou;Yueming Hao;J. Mellor-Crummey;Xiaozhu Meng;Xu Liu
DrGPU: A Top-Down Profiler for GPU Applications
- DOI:10.1145/3578244.3583736
- 发表时间:2023-04
- 期刊:
- 影响因子:0
- 作者:Yueming Hao;Nikhil Jain;R. Van der Wijngaart;N. Saxena;Yuanbo Fan;Xu Liu
- 通讯作者:Yueming Hao;Nikhil Jain;R. Van der Wijngaart;N. Saxena;Yuanbo Fan;Xu Liu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jiajia Li其他文献
TSC2 nonsense mutation in angiomyolipoma with epithelial cysts: a case report and literature review
血管平滑肌脂肪瘤伴上皮囊肿的 TSC2 无义突变一例报告及文献复习
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:4.7
- 作者:
Hong Song;Guoliang Mao;Nanlin Jiao;Jiajia Li;Wanwan Gao;Yinhua Liu;Linming Lu - 通讯作者:
Linming Lu
Facile preparation of Cu3BiS3 nanorods film through a solution dip-coating process
通过溶液浸涂工艺轻松制备 Cu3BiS3 纳米棒薄膜
- DOI:
10.1007/s10854-017-7716-6 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Jiajia Li;Xiuxun Han;Yun Zhao;Jian Li;Min Wang;Chen Dong;Zhaomin Hao - 通讯作者:
Zhaomin Hao
Routing Schemes in Software-Defined Vehicular Networks: Design, Open Issues and Challenges
软件定义车辆网络中的路由方案:设计、开放问题和挑战
- DOI:
10.1109/mits.2019.2953557 - 发表时间:
2021 - 期刊:
- 影响因子:3.6
- 作者:
Liang Zhao;Ahmed Al-Dubai;Albert Y. Zomaya;Geyong Min;Ammar Hawbani;Jiajia Li - 通讯作者:
Jiajia Li
A new algorithm of stock data mining in Internet of Multimedia Things
多媒体物联网股票数据挖掘新算法
- DOI:
10.1007/s11227-017-2195-3 - 发表时间:
2017-11 - 期刊:
- 影响因子:0
- 作者:
Jinfei Yang;Jiajia Li;Shouqiang Liu - 通讯作者:
Shouqiang Liu
l. ‐Cysteine‐modified magnetic microspheres for extraction and quantification of saxitoxin in rat plasma with liquid chromatography and tandem mass spectrometry
湖
- DOI:
10.1002/jssc.202000070 - 发表时间:
2020 - 期刊:
- 影响因子:3.1
- 作者:
Jiajia Li;Jinglin Zhu;Yang Li;Taomin Huang;Yan Li - 通讯作者:
Yan Li
Jiajia Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jiajia Li', 18)}}的其他基金
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
- 批准号:
2316201 - 财政年份:2023
- 资助金额:
$ 24.95万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: Planning: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:规划:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
- 批准号:
2247309 - 财政年份:2022
- 资助金额:
$ 24.95万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: Planning: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:规划:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
- 批准号:
2217010 - 财政年份:2022
- 资助金额:
$ 24.95万 - 项目类别:
Standard Grant
Collaborative Research:CNS Core:Small:Towards Efficient Cloud Services
合作研究:CNS核心:小型:迈向高效的云服务
- 批准号:
2050007 - 财政年份:2020
- 资助金额:
$ 24.95万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CNS Core: Medium: Reconfigurable Kernel Datapaths with Adaptive Optimizations
协作研究:CNS 核心:中:具有自适应优化的可重构内核数据路径
- 批准号:
2345339 - 财政年份:2023
- 资助金额:
$ 24.95万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2230945 - 财政年份:2023
- 资助金额:
$ 24.95万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
- 批准号:
2225578 - 财政年份:2023
- 资助金额:
$ 24.95万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Movement of Computation and Data in Splitkernel-disaggregated, Data-intensive Systems
合作研究:CNS 核心:媒介:Splitkernel 分解的数据密集型系统中的计算和数据移动
- 批准号:
2406598 - 财政年份:2023
- 资助金额:
$ 24.95万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Small: SmartSight: an AI-Based Computing Platform to Assist Blind and Visually Impaired People
合作研究:中枢神经系统核心:小型:SmartSight:基于人工智能的计算平台,帮助盲人和视障人士
- 批准号:
2418188 - 财政年份:2023
- 资助金额:
$ 24.95万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Creating An Extensible Internet Through Interposition
合作研究:CNS核心:小:通过介入创建可扩展的互联网
- 批准号:
2242503 - 财政年份:2023
- 资助金额:
$ 24.95万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Adaptive Smart Surfaces for Wireless Channel Morphing to Enable Full Multiplexing and Multi-user Gains
合作研究:CNS 核心:小型:用于无线信道变形的自适应智能表面,以实现完全复用和多用户增益
- 批准号:
2343959 - 财政年份:2023
- 资助金额:
$ 24.95万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
- 批准号:
2343863 - 财政年份:2023
- 资助金额:
$ 24.95万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2341378 - 财政年份:2023
- 资助金额:
$ 24.95万 - 项目类别:
Standard Grant
Collaborative Research: CISE-MSI: RCBP-RF: CNS: ESD4CDaT - Efficient System Design for Cancer Detection and Treatment
合作研究:CISE-MSI:RCBP-RF:CNS:ESD4CDaT - 癌症检测和治疗的高效系统设计
- 批准号:
2318573 - 财政年份:2023
- 资助金额:
$ 24.95万 - 项目类别:
Standard Grant