Collaborative Research: Boron in soil carbonates: developing a quantitative soil CO2 proxy
合作研究:土壤碳酸盐中的硼:开发定量土壤二氧化碳代理
基本信息
- 批准号:2050339
- 负责人:
- 金额:$ 31.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Rising atmospheric carbon dioxide (CO2) levels pose a global challenge. Understanding and preparing for the future impacts of rising CO2 requires us to look into the past at times periods during Earth's history when atmospheric CO2 levels were higher than they are today. This observational approach is crucial to help test and improve models that are used to project scenarios for the future. This project is aimed at improving the ability to quantify atmospheric CO2 levels of the past. The proposed improvement involves measurements of boron (B) levels and isotopic abundances in calcium carbonate minerals formed in ancient soils. Established theory predicts that B in soil carbonates is sensitive to the abundance of CO2 belowground in soil pore spaces, which is the most uncertain input into an established and longstanding paleo-CO2 ‘proxy’ or indicator. This project will test that theoretical predication with laboratory experiments and studies of natural, modern soils. During the course of the project, undergraduate students from groups underrepresented in the sciences will be mentored through a series of established programs including the Research Traineeship Experience and an NSF Research Experiences for Undergraduates project at UT Austin and Rice University. Multiple recruiting efforts will also be initiated to help improve diversity in undergraduate geoscience programs, including cooperation with the OnRamps program at UT Austin and with regional magnet schools that have a high ethnic diversity within the student population and/or high percentage of underprivileged students. The chemistry of fossilized soils, or paleosols, can record quantitative information about ancient climates and ecosystems. In particular, the carbonate minerals that form within some modern and ancient soils have been targeted for analysis as they are thought to record the composition of soil water and gas in ways that permit the determination of ancient atmospheric pCO2 among other variables. However, critical uncertainties in the "traditional" soil carbonate based proxies (e.g., 13C/12C ratios) fundamentally limit understanding of past environments and motivates the development of new proxies --- such as the work on B isotopic ratios (delta 11B) proposed here -- that provide complementary, but orthogonal constraints on soil chemistry and, potentially, atmospheric CO2. The aqueous speciation of B is pH-dependent and, all else held constant, the pH of soils is a function of soil pCO2. So, the delta 11B of soil carbonates may record information about soil gas that is independent of C isotopic ratios such that, together, they strongly constrain ancient atmospheric compositions and the ecosystem response to C cycle perturbations. As a proof-of-concept, investigators' new measurements of Eocene paleosol carbonates show a decrease in B/Ca and delta 11B values during the hyperthermal event ETM2. The directionality of these changes are entirely consistent with an increase in soil (and atmospheric) CO2. To advance an accurate and quantitative interpretation of these data, they propose to develop new theory for B cycling in soils as well as validate it using experiments and field observations. Critically, their approach will address alternative (to soil pCO2) controls on soil carbonate delta 11B, such as weathering and biotic cycling, that might confound interpretations of CO2 change. The proposed work involves microanalytical imaging and analysis of soil carbonates, development and testing of protocols for B isotopic analysis of soil carbonates, soil sorption experiments, precipitation experiments, and the study of B chemistry across soil CO2 gradients in nature: vertical within individual soils, horizontal across landscapes (climosequence), and temporal (seasonal variation). They will use surface complexation modeling to help interpret experimental and empirical results. The proposed work also involves development of reactive transport models to investigate the effects of biota and weathering on B chemistry in floodplain soils, including the merging of surface complexation models with existing floodplain landscape evolution models.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大气中二氧化碳(CO2)水平的上升构成了一个全球性挑战。要了解二氧化碳上升对未来的影响并做好准备,我们需要回顾地球历史上大气中二氧化碳含量高于今天的时期。这种观察方法对于帮助测试和改进用于预测未来情景的模型至关重要。该项目旨在提高对过去大气二氧化碳水平进行量化的能力。提议的改进包括测量古代土壤中形成的碳酸钙矿物中的硼(B)水平和同位素丰度。已建立的理论预测,土壤碳酸盐中的B对土壤孔隙空间中地下CO2的丰度敏感,这是对已建立和长期存在的古CO2“代理”或指标的最不确定的输入。该项目将通过实验室实验和对自然、现代土壤的研究来检验理论预测。在该项目的过程中,来自科学领域代表性不足的群体的本科生将通过一系列既定计划进行指导,包括UT Austin和Rice University的研究培训经验和NSF本科生研究经验项目。还将启动多项招聘工作,以帮助提高本科地球科学课程的多样性,包括与UT奥斯汀的OnRamps计划以及与学生群体中种族多样性较高和/或贫困学生比例较高的区域磁铁学校合作。古土壤的化学成分可以记录有关古代气候和生态系统的定量信息。特别是,在一些现代和古代土壤中形成的碳酸盐矿物已成为分析的目标,因为它们被认为记录了土壤水和气体的成分,从而可以确定古代大气pCO 2等变量。然而,“传统”土壤碳酸盐基替代物中的关键不确定性(例如,13 C/12 C比值)从根本上限制了对过去环境的理解,并促进了新替代物的开发-例如这里提出的B同位素比值(δ 11 B)的工作-这提供了对土壤化学和潜在的大气CO2的补充但正交的约束。B的水溶液形态是pH值依赖性的,所有其他保持不变,土壤的pH值是土壤pCO 2的函数。因此,土壤碳酸盐的三角洲11B可能记录有关土壤气体的信息,这是独立的碳同位素比值,这样,他们一起强烈地约束古代大气成分和生态系统对碳循环扰动的响应。作为概念验证,研究人员对始新世古土壤碳酸盐的新测量显示,在超高温事件ETM 2期间,B/Ca和δ 11 B值下降。这些变化的方向性与土壤(和大气)CO2的增加完全一致。为了推进对这些数据的准确和定量解释,他们建议开发土壤中B循环的新理论,并使用实验和实地观察来验证它。至关重要的是,他们的方法将解决土壤碳酸盐三角洲11B的替代(土壤pCO 2)控制,如风化和生物循环,这可能会混淆对CO2变化的解释。拟议的工作包括土壤碳酸盐的微分析成像和分析,土壤碳酸盐的B同位素分析,土壤吸附实验,降水实验,和B化学性质的研究协议的开发和测试跨土壤CO2梯度:在单个土壤中垂直,跨景观(气候序列)和时间(季节变化)的水平。他们将使用表面络合建模来帮助解释实验和经验结果。拟议的工作还包括开发反应性运输模型,以调查生物群和风化对洪泛区土壤中B化学的影响,包括将表面络合模型与现有洪泛区景观演变模型合并。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Torres其他文献
Mark Torres的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Torres', 18)}}的其他基金
CAREER: Balancing the global alkalinity cycle by improving models of river chemistry
职业:通过改进河流化学模型平衡全球碱度循环
- 批准号:
2338139 - 财政年份:2025
- 资助金额:
$ 31.97万 - 项目类别:
Continuing Grant
Collaborative Research: EAR-Climate: Physical Controls on CO2 Release from Shale Weathering
合作研究:EAR-气候:页岩风化中二氧化碳释放的物理控制
- 批准号:
2141520 - 财政年份:2022
- 资助金额:
$ 31.97万 - 项目类别:
Standard Grant
Does Sediment Storage Set the Pace of the Terrestrial Organic Carbon Cycle?
沉积物储存是否决定了陆地有机碳循环的步伐?
- 批准号:
2017106 - 财政年份:2021
- 资助金额:
$ 31.97万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: FuSe: Heterogeneous Integration of III-Nitride and Boron Arsenide for Enhanced Thermal and Electronic Performance
合作研究:FuSe:III族氮化物和砷化硼的异质集成以增强热和电子性能
- 批准号:
2329109 - 财政年份:2023
- 资助金额:
$ 31.97万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: Heterogeneous Integration of III-Nitride and Boron Arsenide for Enhanced Thermal and Electronic Performance
合作研究:FuSe:III族氮化物和砷化硼的异质集成以增强热和电子性能
- 批准号:
2329110 - 财政年份:2023
- 资助金额:
$ 31.97万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: Heterogeneous Integration of III-Nitride and Boron Arsenide for Enhanced Thermal and Electronic Performance
合作研究:FuSe:III族氮化物和砷化硼的异质集成以增强热和电子性能
- 批准号:
2329107 - 财政年份:2023
- 资助金额:
$ 31.97万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: Heterogeneous Integration of III-Nitride and Boron Arsenide for Enhanced Thermal and Electronic Performance
合作研究:FuSe:III族氮化物和砷化硼的异质集成以增强热和电子性能
- 批准号:
2329108 - 财政年份:2023
- 资助金额:
$ 31.97万 - 项目类别:
Continuing Grant
Collaborative Research: Behavior of Boron During Prograde Diagenesis and Metamorphism of Pelagic Sediments from the Nankai Trough
合作研究:南海海槽远洋沉积物的成岩作用和变质作用中硼的行为
- 批准号:
2027362 - 财政年份:2021
- 资助金额:
$ 31.97万 - 项目类别:
Standard Grant
Collaborative Research: Mantle metasomatism during serpentinization in subduction zones: Insights from in-situ boron isotopes
合作研究:俯冲带蛇纹石化过程中的地幔交代作用:来自原位硼同位素的见解
- 批准号:
2150618 - 财政年份:2021
- 资助金额:
$ 31.97万 - 项目类别:
Standard Grant
Collaborative Research: Uncovering marine carbon chemistry dynamics during the deglaciation with boron isotopes and radiocarbon
合作研究:用硼同位素和放射性碳揭示冰消过程中的海洋碳化学动力学
- 批准号:
2032343 - 财政年份:2021
- 资助金额:
$ 31.97万 - 项目类别:
Standard Grant
Collaborative Research: Boron in soil carbonates: development of a quantitative soil CO2 proxy
合作研究:土壤碳酸盐中的硼:开发定量土壤二氧化碳代理
- 批准号:
2050323 - 财政年份:2021
- 资助金额:
$ 31.97万 - 项目类别:
Standard Grant
Collaborative Research: Uncovering marine carbon chemistry dynamics during the deglaciation with boron isotopes and radiocarbon
合作研究:用硼同位素和放射性碳揭示冰消过程中的海洋碳化学动力学
- 批准号:
2032340 - 财政年份:2021
- 资助金额:
$ 31.97万 - 项目类别:
Standard Grant
Collaborative Research: Behavior of Boron During Prograde Diagenesis and Metamorphism of Pelagic Sediments from the Nankai Trough
合作研究:南海海槽远洋沉积物的成岩作用和变质作用中硼的行为
- 批准号:
2026692 - 财政年份:2021
- 资助金额:
$ 31.97万 - 项目类别:
Standard Grant