Collaborative Research: Microscale interactions of foundation species with their fluid environment: biological feedbacks alter ecological interactions of mussels
合作研究:基础物种与其流体环境的微观相互作用:生物反馈改变贻贝的生态相互作用
基本信息
- 批准号:2050345
- 负责人:
- 金额:$ 23.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The project investigates how the metabolic activity of dense aggregations of marine organisms alter the water chemistry of their interstitial spaces, and how these microscale alterations feedback to affect the organisms’ interactions in coastal ecosystems. The research team focuses on bivalve mussels, foundation species that form dense ‘beds’ typically known for facilitating other species by ameliorating harsh flow conditions. This ability can become a liability, however, if flow is not sufficient to flush the interstitial spaces and steep, metabolically-driven concentration gradients develop. The research evaluates whether corrosive chemical microclimates (such as low oxygen or low pH) are most extreme in low flow, high temperature conditions, especially for dense aggregations of mussels with large biomass and/or high respiration rates, and if they negatively impact mussel beds and the diverse biological communities they support. The research addresses a global societal concern, the impact of anthropogenic climate change on coastal marine ecosystems, and has potential applications to aquaculture and biofouling industries by informing adaptation strategies to “future-proof” mussel farms in the face of climate change and improved antifouling practices for ships, moorings, and industrial cooling systems. The project forges new collaborations with investigators from three campuses and integrates research and education through interdisciplinary training of a diverse group of graduate, undergraduate and high school students. STEM education and environmental stewardship is promoted by the development of a K-12 level science curriculum module and a hand’s-on public exhibit of bivalve biology at a local shellfish farm. Research findings are disseminated in a variety of forums, including peer-reviewed scientific publications and research presentations at regional, national and international meetings.The research team develops a framework that links environmental conditions measured at a coarse scale (100m-100km; e.g., most environmental observatories) and ecological processes at the organismal scale (1 cm – 10 m). Specifically, the project investigates how aggregations of foundation species impact flow through interstitial spaces, and how this ultimately impacts water chemistry immediately adjacent to the organisms. The research focuses on mytilid mussels, with the expectation that the aggregation alters the flow and chemical transport in two ways, one by creating a physical resistance, which reduces the exchange, and the other by enhancing the exchange due to their incurrent/excurrent pumping. These metabolically-driven feedbacks are expected to be strongest in densely packed, high biomass aggregations and under certain ambient environmental conditions, namely low flow and elevated temperature, and can lead to a range of negative ecological impacts that could not be predicted directly from coarse scale measures of ambient seawater chemistry or temperature. The team develops computational fluid dynamic (CFD) models to predict interstitial flows and concentration gradients of dissolved oxygen and pH within mussel beds. The CFD model incorporates mussel behavior and physiological activity (filtration, gaping, respiration) based on published values as well as new empirical work. Model predictions are compared to flow and concentration gradients measured in mussel aggregations in the laboratory and field. Finally, the team conducts several short-term experiments to quantify some of the potential negative ecological impacts of corrosive interstitial water chemistry on mussel aggregations, such as reduced growth, increased dislodgement, increased predation risk, and reduced biodiversity. Because the model is based on fluid dynamic principles and functional traits, the framework is readily adaptable to other species that form dense assemblages, thereby providing a useful tool for predicting the ability of foundation species to persist and provide desirable ecosystem services under current and future multidimensional climate scenarios.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目研究了海洋生物的密集聚集的代谢活性如何改变其间质空间的水化学,以及这些显微镜改变反馈如何影响生物体在沿海生态系统中的相互作用。研究小组专注于双壳类贻贝,这些贻贝是形成密集的“床”的基础物种,通常以减轻危害流量条件来促进其他物种而闻名。但是,如果流动不足以冲洗间隙空间和钢,代谢驱动的浓度梯度会发展出来,则这种能力可能会成为责任。该研究评估了腐蚀性化学微气候(例如低氧气或低pH值)在低流量,高温条件下是否最极端,尤其是对于具有较大生物量和/或高呼吸速率的贻贝的密集聚集,以及它们是否对贻贝床负面影响,以及它们所支持的潜水员生物学社区。这项研究涉及全球社会问题,人为气候变化对沿海海洋生态系统的影响,并通过告知“未来”肌肉农场的适应性策略,在气候变化和改善的防水措施中,用于“未来的”肌肉农场,对水产养殖和生物污染行业有潜在的应用。该项目与来自三个校园的调查人员进行了新的合作,并通过对跨学科的研究生,本科生和高中生的跨学科培训来整合研究和教育。 STEM的教育和环境管理是通过开发K-12级的科学课程模块以及在当地贝类农场举行的双壳类生物学的手段公开展览来促进的。研究结果在各种论坛中进行了传播,包括在区域,国家和国际会议上进行同行评审的科学出版物和研究演讲。研究团队开发了一个框架,将以粗略尺度(100m-100km;例如,大多数环境观察)和有机尺度(1 CM - 10 M)进行粗略测量的环境条件联系起来。具体而言,该项目调查了基础物种的聚集如何影响流经间质空间的流动,以及这最终如何影响与生物体相邻的水化学反应。该研究的重点是mytilid贻贝,期望聚集以两种方式改变流量和化学运输,一种通过产生身体阻力来减少交换,而另一个通过增强交换而因其出现/发射泵送而增强交换。这些代谢驱动的反馈预计将在悬而未决的高生物量聚集中以及在某些环境环境条件下,即流量低和温度升高,并且可能导致一系列无法直接从环境海水化学或温度来预测的负面生态影响。该团队开发了计算流体动力学(CFD)模型,以预测肌肉床内溶解氧和pH的间隙流和浓度梯度。 CFD模型结合了基于已发表的价值以及新的经验工作的肌肉行为和体育活动(过滤,间隙,呼吸)。将模型预测与在肌肉床中测得的流量和浓度梯度进行比较。实验室和现场的聚合。最后,该团队进行了几项短期实验,以量化腐蚀性间质水化学对贻贝聚集的一些潜在的负面生态影响,例如降低,披露增加,预测风险增加以及生物多样性降低。 Because the model is based on fluid dynamic principles and functional traits, the framework is readily adaptable to other species that form dense assemblages, Thereby providing a useful tool for predicting the ability of foundation species to persist and provide desirable ecosystem services under current and future multidimensional climate scenarios.This award reflects NSF's statutory mission and has been deemed precious of support through evaluation using the Foundation's intellectual merit and broader影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Reidenbach其他文献
Audit Committee Chair Monitoring Incentives to Use Voluntary Disclosure in the Audit Committee Report Under High Agency Conflicts
审计委员会主席监督在高度代理冲突情况下在审计委员会报告中使用自愿披露的激励措施
- DOI:
10.1177/0148558x221110155 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Matthew Reidenbach - 通讯作者:
Matthew Reidenbach
Matthew Reidenbach的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Reidenbach', 18)}}的其他基金
Collaborative Research: NCS-FO: A Computational Neuroscience Framework for Olfactory Scene Analysis within Complex Fluid Environments
合作研究:NCS-FO:复杂流体环境中嗅觉场景分析的计算神经科学框架
- 批准号:
1631864 - 财政年份:2016
- 资助金额:
$ 23.31万 - 项目类别:
Standard Grant
CAREER: Quantifying wave-driven mixing and mass transport dynamics within coastal ecosystems
职业:量化沿海生态系统内波浪驱动的混合和质量传输动力学
- 批准号:
1151314 - 财政年份:2012
- 资助金额:
$ 23.31万 - 项目类别:
Continuing Grant
IDR: Olfactory processing of flow and odor structure within a turbulent plume
IDR:湍流羽流内流动和气味结构的嗅觉处理
- 批准号:
0933034 - 财政年份:2009
- 资助金额:
$ 23.31万 - 项目类别:
Standard Grant
相似国自然基金
微量元素钒调控能量代谢用于监控结直肠癌治疗及转移抑制的机制研究
- 批准号:62305121
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
微量肝癌组织肿瘤新抗原高效稳定深度覆盖鉴定技术研究
- 批准号:32371503
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于微量铌和稀土协同处理制备高性能超级双相不锈钢的基础研究
- 批准号:52374334
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CFRP/Ti叠层超临界CO2微量润滑辅助超声螺旋铣孔协同加工机理研究
- 批准号:52365058
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
微量元素锌在糖尿病前期转归中的作用与干预研究
- 批准号:82373567
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Understanding Interactions between Mesoscale and Microscale Flows in the Stable Boundary Layer over Shallow Terrain
合作研究:了解浅层稳定边界层中尺度流和微尺度流之间的相互作用
- 批准号:
2220664 - 财政年份:2022
- 资助金额:
$ 23.31万 - 项目类别:
Standard Grant
Collaborative Research: Understanding Interactions between Mesoscale and Microscale Flows in the Stable Boundary Layer over Shallow Terrain
合作研究:了解浅层稳定边界层中尺度流和微尺度流之间的相互作用
- 批准号:
2220663 - 财政年份:2022
- 资助金额:
$ 23.31万 - 项目类别:
Standard Grant
Collaborative Research: Understanding Interactions between Mesoscale and Microscale Flows in the Stable Boundary Layer over Shallow Terrain
合作研究:了解浅层稳定边界层中尺度流和微尺度流之间的相互作用
- 批准号:
2220662 - 财政年份:2022
- 资助金额:
$ 23.31万 - 项目类别:
Standard Grant
RUI: Collaborative Research: Microscale interactions of foundation species with their fluid environment: biological feedbacks alter ecological interactions of mussels
RUI:合作研究:基础物种与其流体环境的微观相互作用:生物反馈改变贻贝的生态相互作用
- 批准号:
2050129 - 财政年份:2021
- 资助金额:
$ 23.31万 - 项目类别:
Standard Grant
Collaborative Research: Microscale interactions of foundation species with their fluid environment: biological feedbacks alter ecological interactions of mussels
合作研究:基础物种与其流体环境的微观相互作用:生物反馈改变贻贝的生态相互作用
- 批准号:
2050273 - 财政年份:2021
- 资助金额:
$ 23.31万 - 项目类别:
Standard Grant