Collaborative Research: Microscale interactions of foundation species with their fluid environment: biological feedbacks alter ecological interactions of mussels

合作研究:基础物种与其流体环境的微观相互作用:生物反馈改变贻贝的生态相互作用

基本信息

  • 批准号:
    2050273
  • 负责人:
  • 金额:
    $ 45.64万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-02-01 至 2025-01-31
  • 项目状态:
    未结题

项目摘要

The project investigates how the metabolic activity of dense aggregations of marine organisms alter the water chemistry of their interstitial spaces, and how these microscale alterations feedback to affect the organisms’ interactions in coastal ecosystems. The research team focuses on bivalve mussels, foundation species that form dense ‘beds’ typically known for facilitating other species by ameliorating harsh flow conditions. This ability can become a liability, however, if flow is not sufficient to flush the interstitial spaces and steep, metabolically-driven concentration gradients develop. The research evaluates whether corrosive chemical microclimates (such as low oxygen or low pH) are most extreme in low flow, high temperature conditions, especially for dense aggregations of mussels with large biomass and/or high respiration rates, and if they negatively impact mussel beds and the diverse biological communities they support. The research addresses a global societal concern, the impact of anthropogenic climate change on coastal marine ecosystems, and has potential applications to aquaculture and biofouling industries by informing adaptation strategies to “future-proof” mussel farms in the face of climate change and improved antifouling practices for ships, moorings, and industrial cooling systems. The project forges new collaborations with investigators from three campuses and integrates research and education through interdisciplinary training of a diverse group of graduate, undergraduate and high school students. STEM education and environmental stewardship is promoted by the development of a K-12 level science curriculum module and a hand’s-on public exhibit of bivalve biology at a local shellfish farm. Research findings are disseminated in a variety of forums, including peer-reviewed scientific publications and research presentations at regional, national and international meetings.The research team develops a framework that links environmental conditions measured at a coarse scale (100m-100km; e.g., most environmental observatories) and ecological processes at the organismal scale (1 cm – 10 m). Specifically, the project investigates how aggregations of foundation species impact flow through interstitial spaces, and how this ultimately impacts water chemistry immediately adjacent to the organisms. The research focuses on mytilid mussels, with the expectation that the aggregation alters the flow and chemical transport in two ways, one by creating a physical resistance, which reduces the exchange, and the other by enhancing the exchange due to their incurrent/excurrent pumping. These metabolically-driven feedbacks are expected to be strongest in densely packed, high biomass aggregations and under certain ambient environmental conditions, namely low flow and elevated temperature, and can lead to a range of negative ecological impacts that could not be predicted directly from coarse scale measures of ambient seawater chemistry or temperature. The team develops computational fluid dynamic (CFD) models to predict interstitial flows and concentration gradients of dissolved oxygen and pH within mussel beds. The CFD model incorporates mussel behavior and physiological activity (filtration, gaping, respiration) based on published values as well as new empirical work. Model predictions are compared to flow and concentration gradients measured in mussel aggregations in the laboratory and field. Finally, the team conducts several short-term experiments to quantify some of the potential negative ecological impacts of corrosive interstitial water chemistry on mussel aggregations, such as reduced growth, increased dislodgement, increased predation risk, and reduced biodiversity. Because the model is based on fluid dynamic principles and functional traits, the framework is readily adaptable to other species that form dense assemblages, thereby providing a useful tool for predicting the ability of foundation species to persist and provide desirable ecosystem services under current and future multidimensional climate scenarios.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目研究了海洋生物密集聚集体的代谢活动如何改变其间隙空间的水化学,以及这些微尺度的改变如何反馈影响沿海生态系统中生物的相互作用。研究小组的重点是双壳贝类,基础物种,形成密集的“床”,通常通过改善恶劣的流动条件来促进其他物种。然而,如果流量不足以冲洗间隙空间,并且形成陡峭的代谢驱动的浓度梯度,则这种能力可能成为一种负担。该研究评估了腐蚀性化学微气候(如低氧或低pH值)在低流量,高温条件下是否最极端,特别是对于具有大生物量和/或高呼吸率的贻贝密集聚集体,以及它们是否对贻贝床及其支持的多样化生物群落产生负面影响。该研究解决了全球社会关注的问题,人为气候变化对沿海海洋生态系统的影响,并通过为面对气候变化的“面向未来”贻贝养殖场提供适应战略以及改善船舶,系泊设备和工业冷却系统的可持续性实践,对水产养殖和生物污损行业具有潜在的应用。该项目与来自三个校区的研究人员建立了新的合作关系,并通过对研究生、本科生和高中生的跨学科培训,将研究和教育融为一体。STEM教育和环境管理是通过开发K-12级科学课程模块和在当地贝类养殖场举办双壳类生物学公开展览来促进的。研究成果在各种论坛上传播,包括同行评议的科学出版物和在区域、国家和国际会议上的研究报告。研究小组制定了一个框架,将粗尺度(100米-100公里;例如,大多数环境观测站)和生物体尺度(1厘米至10米)的生态过程。具体来说,该项目研究了基础物种的聚集如何影响通过间隙空间的流动,以及这最终如何影响紧邻生物体的水化学。该研究的重点是mytilid贻贝,期望聚集以两种方式改变流动和化学运输,一种是通过产生物理阻力,减少交换,另一种是通过增强交换,因为它们的流入/流出泵送。这些代谢驱动的反馈预计将是最强的密集包装,高生物量聚集体和在某些环境条件下,即低流量和高温,并可能导致一系列的负面生态影响,不能直接从周围海水化学或温度的粗尺度测量预测。该团队开发了计算流体动力学(CFD)模型来预测贻贝床内溶解氧和pH值的间隙流和浓度梯度。计算流体力学模型结合贻贝的行为和生理活动(过滤,张口,呼吸)的基础上公布的值以及新的经验工作。模型预测相比,在实验室和现场测量贻贝聚集的流量和浓度梯度。 最后,该团队进行了几项短期实验,以量化腐蚀性间隙水化学对贻贝聚集体的一些潜在负面生态影响,例如生长减少,移位增加,捕食风险增加和生物多样性减少。由于该模型基于流体动力学原理和功能特征,因此该框架很容易适用于形成密集组合的其他物种,从而为预测基础物种在当前和未来多维气候情景下的持续能力和提供理想的生态系统服务提供了有用的工具。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的学术价值和更广泛的影响审查标准。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Energetic scope limits growth but not byssal thread production of two mytilid mussels
Resource allocation to a structural biomaterial: Induced production of byssal threads decreases growth of a marine mussel
结构生物材料的资源分配:诱导足丝的产生会降低海洋贻贝的生长
  • DOI:
    10.1111/1365-2435.13788
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Roberts, Emily A.;Newcomb, Laura A.;McCartha, Michelle M.;Harrington, Katie J.;LaFramboise, Sam A.;Carrington, Emily;Sebens, Kenneth P.
  • 通讯作者:
    Sebens, Kenneth P.
Divergent Effects of Ocean Warming on Byssal Attachment in Two Congener Mussel Species
海洋变暖对两种同类贻贝物种足底附着的不同影响
  • DOI:
    10.1093/icb/icac111
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Newcomb, L. A.;Cannistra, A. F.;Carrington, E.
  • 通讯作者:
    Carrington, E.
Mussels Repair Shell Damage despite Limitations Imposed by Ocean Acidification
尽管受到海洋酸化的限制,贻贝仍能修复外壳损伤
  • DOI:
    10.3390/jmse10030359
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    George, Matthew N.;O’Donnell, Michael J.;Concodello, Michael;Carrington, Emily
  • 通讯作者:
    Carrington, Emily
The Synergistic Impacts of Anthropogenic Stressors and COVID-19 on Aquaculture: A Current Global Perspective
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Emily Carrington其他文献

High-endurance algae
高耐受性藻类
  • DOI:
    10.1038/503345a
  • 发表时间:
    2013-11-20
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Emily Carrington
  • 通讯作者:
    Emily Carrington
High-endurance algae
高耐受性藻类
  • DOI:
    10.1038/503345a
  • 发表时间:
    2013-11-20
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Emily Carrington
  • 通讯作者:
    Emily Carrington

Emily Carrington的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Emily Carrington', 18)}}的其他基金

Ocean Acidification-Category 1: Effects of Ocean Acidification on Coastal Organisms: an Ecomaterials Perspective
海洋酸化-类别 1:海洋酸化对沿海生物的影响:生态材料的角度
  • 批准号:
    1041213
  • 财政年份:
    2010
  • 资助金额:
    $ 45.64万
  • 项目类别:
    Continuing Grant
The effects of temperature on ecological processes in a rocky intertidal community: a mechanistic approach
温度对岩石潮间带群落生态过程的影响:机械方法
  • 批准号:
    0824903
  • 财政年份:
    2008
  • 资助金额:
    $ 45.64万
  • 项目类别:
    Standard Grant
Incorporating Structural Response into the Prediction of Disturbance of a Competitive Dominant on Wave-Swept Rocky Shores
将结构响应纳入对波浪席卷岩石海岸竞争优势的干扰的预测中
  • 批准号:
    0082605
  • 财政年份:
    2000
  • 资助金额:
    $ 45.64万
  • 项目类别:
    Continuing Grant
RPGW: Incorporating Structural Response into the Prediction of Disturbance of a Competitive Dominant on Wave-Swept Rocky Shores
RPGW:将结构响应纳入对波浪席卷岩石海岸竞争优势的干扰的预测中
  • 批准号:
    9711893
  • 财政年份:
    1998
  • 资助金额:
    $ 45.64万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Understanding Interactions between Mesoscale and Microscale Flows in the Stable Boundary Layer over Shallow Terrain
合作研究:了解浅层稳定边界层中尺度流和微尺度流之间的相互作用
  • 批准号:
    2220664
  • 财政年份:
    2022
  • 资助金额:
    $ 45.64万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding Interactions between Mesoscale and Microscale Flows in the Stable Boundary Layer over Shallow Terrain
合作研究:了解浅层稳定边界层中尺度流和微尺度流之间的相互作用
  • 批准号:
    2220663
  • 财政年份:
    2022
  • 资助金额:
    $ 45.64万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding Interactions between Mesoscale and Microscale Flows in the Stable Boundary Layer over Shallow Terrain
合作研究:了解浅层稳定边界层中尺度流和微尺度流之间的相互作用
  • 批准号:
    2220662
  • 财政年份:
    2022
  • 资助金额:
    $ 45.64万
  • 项目类别:
    Standard Grant
RUI: Collaborative Research: Microscale interactions of foundation species with their fluid environment: biological feedbacks alter ecological interactions of mussels
RUI:合作研究:基础物种与其流体环境的微观相互作用:生物反馈改变贻贝的生态相互作用
  • 批准号:
    2050129
  • 财政年份:
    2021
  • 资助金额:
    $ 45.64万
  • 项目类别:
    Standard Grant
Collaborative Research: Microscale interactions of foundation species with their fluid environment: biological feedbacks alter ecological interactions of mussels
合作研究:基础物种与其流体环境的微观相互作用:生物反馈改变贻贝的生态相互作用
  • 批准号:
    2050345
  • 财政年份:
    2021
  • 资助金额:
    $ 45.64万
  • 项目类别:
    Standard Grant
Collaborative Research: Fundamental Investigation of Microscale Residual Stresses in Additively Manufactured Stainless Steel
合作研究:增材制造不锈钢中微尺度残余应力的基础研究
  • 批准号:
    2004412
  • 财政年份:
    2020
  • 资助金额:
    $ 45.64万
  • 项目类别:
    Standard Grant
GCR: Collaborative Research: The Convergent Impact of Marine Viruses, Minerals, and Microscale Physics on Phytoplankton Carbon Sequestration
GCR:合作研究:海洋病毒、矿物质和微尺度物理对浮游植物碳固存的综合影响
  • 批准号:
    2020890
  • 财政年份:
    2020
  • 资助金额:
    $ 45.64万
  • 项目类别:
    Continuing Grant
GCR: Collaborative Research: The Convergent Impact of Marine Viruses, Minerals, and Microscale Physics on Phytoplankton Carbon Sequestration
GCR:合作研究:海洋病毒、矿物质和微尺度物理对浮游植物碳固存的综合影响
  • 批准号:
    2020878
  • 财政年份:
    2020
  • 资助金额:
    $ 45.64万
  • 项目类别:
    Continuing Grant
GCR: Collaborative Research: The Convergent Impact of Marine Viruses, Minerals, and Microscale Physics on Phytoplankton Carbon Sequestration
GCR:合作研究:海洋病毒、矿物质和微尺度物理对浮游植物碳固存的综合影响
  • 批准号:
    2021032
  • 财政年份:
    2020
  • 资助金额:
    $ 45.64万
  • 项目类别:
    Continuing Grant
Collaborative Research: Fundamental Investigation of Microscale Residual Stresses in Additively Manufactured Stainless Steel
合作研究:增材制造不锈钢中微尺度残余应力的基础研究
  • 批准号:
    2004429
  • 财政年份:
    2020
  • 资助金额:
    $ 45.64万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了