Collaborative Research: Laboratory and theoretical study of geyser dynamics
合作研究:间歇泉动力学的实验室和理论研究
基本信息
- 批准号:2050785
- 负责人:
- 金额:$ 18.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
With over 4 million annual visitors to Yellowstone's Old Faithful geyser, public fascination with geysers is undeniable. Yet, the scientific understanding of geysers is incomplete. While it has been understood for over a century that geyser eruptions are caused by the sudden boiling of water in underground conduits, scientists do not understand what triggers these boiling events, and how the size and shape of the underground conduits affect a geyser’s behavior. Recent studies at geyser fields in Yellowstone National Park, El Tatio on the Chilean altiplano, and the Geyser Valley in Kamchatka, have shown that the underground plumbing systems at these sites include a reservoir that is offset to the side relative to the main eruption conduit. In such systems, steam gets captured in the side reservoir, earning it the name ‘bubble trap’. The discovery of this geometry is the most significant advance in several decades, but researchers are only beginning to understand how it affects a geyser's behavior. This team will create a small geyser setup in the laboratory that will include a bubble trap. They will run a series of experiments to study how fluids behave in this type of system. The proposed work will use mathematical models to relate behaviors observed in the lab to the much larger systems that we encounter in nature. The project will provide research experiences for undergraduate students and will contribute instructional materials to educators through an established teacher training program. The laboratory geyser will be exhibited at the Lamont Doherty Earth Observatory open house, visited by thousands of people each year.Geysers represent a unique class of hydrothermal systems where the thermodynamics of two-phase (vapor and liquid) flow and favorable conduit geometries combine to produce episodic eruptions. With over 4 million annual visitors to Yellowstone's Old Faithful geyser, public fascination with geysers is undeniable, but our scientific understanding of geysers is incomplete. Recently, however, data from geyser fields in Yellowstone National Park, El Tatio on the Chilean altiplano, and the Geyser Valley in Kamchatka, have provided compelling evidence for conduit geometries that include a reservoir that is laterally offset from the eruption conduit. This so-called 'bubble trap' geometry allows compressed steam to accumulate under an impermeable roof, and its discovery has revitalized geyser research as this team seeks to understand its implications for a geyser's dynamic behavior. None of the laboratory geyser experiments developed to-date accurately simulates the full range of behaviors observed in natural systems, and the effects of bubble trap conduit geometries have not been explored thoroughly. Similarly, mathematical models have informed geyser research for more than a century, but none of the extant models considered the full range of thermodynamic and fluid mechanics processes associated with a bubble trap conduit geometry. This project will address both of these shortcomings by combining novel laboratory experiments that include the missing pieces for geysers with a bubble trap. The laboratory analog geyser will provide an idealized representation of the thermodynamic processes and subsurface geometries of natural geysers, enabling a series of experiments aimed at elucidating the fluid mechanical and thermodynamic behaviors of the geyser system. In parallel, mathematical models will be developed to describe the system behavior, and these relationships will be used to improve our understanding of natural systems. The laboratory geyser will enable the evaluation of competing hypotheses for eruption triggering, and comprehensive monitoring instrumentation will enable the observation of geyser processes in unprecedented detail.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
黄石公园的老忠实间歇泉每年有超过400万的游客,公众对间歇泉的迷恋是不可否认的。然而,对间歇泉的科学认识是不完整的。虽然世纪以来人们都知道间歇泉喷发是由于地下管道中的水突然沸腾引起的,但科学家们并不了解是什么触发了这些沸腾事件,以及地下管道的大小和形状如何影响间歇泉的行为。最近对黄石国家公园、智利高原上的塔蒂奥和堪察加半岛间歇泉谷的间歇泉场的研究表明,这些地点的地下管道系统包括一个相对于主要喷发管道向一侧偏移的水库。在这种系统中,蒸汽被捕获在侧水库,赢得了它的名字'气泡陷阱'。这种几何形状的发现是几十年来最重要的进步,但研究人员才刚刚开始了解它如何影响间歇泉的行为。该团队将在实验室中创建一个小型间歇泉装置,其中包括气泡捕集器。他们将进行一系列实验来研究流体在这种系统中的行为。拟议的工作将使用数学模型将实验室中观察到的行为与我们在自然界中遇到的更大的系统联系起来。该项目将为本科生提供研究经验,并将通过一个既定的教师培训计划向教育工作者提供教学材料。实验室间歇泉将在拉蒙多尔蒂地球观测站的开放日上展出,每年有数千人参观。间歇泉代表了一类独特的热液系统,其中两相(蒸汽和液体)流动的热力学和有利的管道几何形状联合收割机结合在一起,产生了间歇性喷发。黄石公园的老忠实间歇泉每年有超过400万的游客,公众对间歇泉的迷恋是不可否认的,但我们对间歇泉的科学理解是不完整的。然而,最近,黄石国家公园,智利高原上的El Tatio和堪察加半岛的间歇泉谷的间歇泉领域的数据,提供了令人信服的证据导管的几何形状,包括水库是横向偏离喷发导管。这种所谓的“气泡阱”几何形状允许压缩蒸汽在不可渗透的屋顶下积聚,它的发现重振了间歇泉研究,因为该团队试图了解其对间歇泉动态行为的影响。迄今为止,没有一个实验室间歇泉实验能够准确地模拟在自然系统中观察到的各种行为,并且气泡捕获导管几何形状的影响也没有得到彻底的探索。同样,数学模型已经告知间歇泉研究超过世纪,但没有一个现存的模型认为与气泡阱导管几何形状相关的热力学和流体力学过程的全部范围。该项目将通过结合新颖的实验室实验来解决这两个缺点,其中包括间歇泉缺失的部分与气泡捕集器。实验室模拟间歇泉将提供天然间歇泉的热力学过程和地下几何形状的理想化表示,使一系列旨在阐明间歇泉系统的流体力学和热力学行为的实验成为可能。与此同时,将开发数学模型来描述系统行为,这些关系将用于提高我们对自然系统的理解。实验室间歇泉将使火山喷发触发的相互竞争的假设进行评估,全面的监测仪器将使间歇泉过程的观察前所未有的细节。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Sohn其他文献
Robert Sohn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Sohn', 18)}}的其他基金
Collaborative Research: Investigating the Detachment Fault Cycle at the Mid-Cayman Spreading Center
合作研究:调查开曼中部扩张中心的脱离断层旋回
- 批准号:
2104492 - 财政年份:2022
- 资助金额:
$ 18.19万 - 项目类别:
Continuing Grant
Seismicity of peridotite alteration
橄榄岩蚀变的地震活动
- 批准号:
2147529 - 财政年份:2022
- 资助金额:
$ 18.19万 - 项目类别:
Continuing Grant
RAPID: Short-period Seismic Study of Actively Serpentinizing Lithosphere in the Oman Ophiolite
RAPID:阿曼蛇绿岩岩石圈活跃蛇纹石化的短期地震研究
- 批准号:
1945305 - 财政年份:2019
- 资助金额:
$ 18.19万 - 项目类别:
Standard Grant
Collaborative Research: The origin and propagation of shallow water microseisms: a multidisciplinary study at Yellowstone Lake
合作研究:浅水微震的起源和传播:黄石湖的多学科研究
- 批准号:
1760056 - 财政年份:2018
- 资助金额:
$ 18.19万 - 项目类别:
Continuing Grant
Seismicity and Fault Structure of Oceanic Detachment Faults
大洋拆离断层的地震活动与断层结构
- 批准号:
1458084 - 财政年份:2015
- 资助金额:
$ 18.19万 - 项目类别:
Standard Grant
Collaborative Research: Modeling Hydrothermal Recharge and Outflow in Oceanic Crust Analogs with Sharp Permeability Gradients
合作研究:模拟具有尖锐渗透率梯度的洋壳模拟中的热液补给和流出
- 批准号:
1536705 - 财政年份:2015
- 资助金额:
$ 18.19万 - 项目类别:
Standard Grant
Collaborative Research: Alteration of Mantle Peridotite: Geochemical Fluxes and Dynamics of Far from Equilibrium Transport
合作研究:地幔橄榄岩的蚀变:地球化学通量和远离平衡输运的动力学
- 批准号:
1516313 - 财政年份:2015
- 资助金额:
$ 18.19万 - 项目类别:
Standard Grant
Collaborative Research: The Response of Continental Hydrothermal Systems to Tectonic, Magmatic, and Climatic Forcing
合作研究:大陆热液系统对构造、岩浆和气候强迫的响应
- 批准号:
1516361 - 财政年份:2015
- 资助金额:
$ 18.19万 - 项目类别:
Continuing Grant
Analysis of Hydraulic Seismicity at the TAG Hydrothermal Mound
TAG热液丘水力地震活动分析
- 批准号:
0647221 - 财政年份:2007
- 资助金额:
$ 18.19万 - 项目类别:
Continuing Grant
Collaborative Research: Hydrothermal Processes on the Gakkel Ridge
合作研究:Gakkel 海脊的热液过程
- 批准号:
0425838 - 财政年份:2004
- 资助金额:
$ 18.19万 - 项目类别:
Standard Grant
相似国自然基金
川渝共建重点实验室的联合创新机制和考核指标体系研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于疾控高质量发展要求的实验室能力建设规划研究
- 批准号:2025JZ24
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
实验室仪器共享物联网平台研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
实验室安全多维感知轻量化预警系统集成研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于制药实验室智能化安全管理系统的开发与应用研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
血浆中结核分枝杆菌sRNA的转运方式及实验室诊断技术体系的研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
自测用尿酸监测系统质量评价方法及标准研究
- 批准号:2024JJ8179
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
提升上海国际联合实验室创新能级和国际影响力研究
- 批准号:n/a
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于实验室和环境大气的二次有机气溶胶挥发性演化及其参数化研究
- 批准号:42375105
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
基于双模态数据的实验室地震强泛化能力机器学习预测研究
- 批准号:42374070
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Laboratory Measurements of Oxygen (O) and Nitrogen (N2) Ultraviolet (UV) Cross Sections by Particle Impact for Remote Sensing of Thermosphere O/N2 Variation
合作研究:通过粒子撞击实验室测量氧气 (O) 和氮气 (N2) 紫外线 (UV) 截面,以遥感热层 O/N2 变化
- 批准号:
2334619 - 财政年份:2024
- 资助金额:
$ 18.19万 - 项目类别:
Standard Grant
Collaborative Research: Broadening Instructional Innovation in the Chemistry Laboratory through Excellence in Curriculum Development
合作研究:通过卓越的课程开发扩大化学实验室的教学创新
- 批准号:
2337028 - 财政年份:2024
- 资助金额:
$ 18.19万 - 项目类别:
Continuing Grant
Collaborative Research: Laboratory Measurements of Oxygen (O) and Nitrogen (N2) Ultraviolet (UV) Cross Sections by Particle Impact for Remote Sensing of Thermosphere O/N2 Variation
合作研究:通过粒子撞击实验室测量氧气 (O) 和氮气 (N2) 紫外线 (UV) 截面,以遥感热层 O/N2 变化
- 批准号:
2334618 - 财政年份:2024
- 资助金额:
$ 18.19万 - 项目类别:
Continuing Grant
Collaborative Research: Broadening Instructional Innovation in the Chemistry Laboratory through Excellence in Curriculum Development
合作研究:通过卓越的课程开发扩大化学实验室的教学创新
- 批准号:
2337027 - 财政年份:2024
- 资助金额:
$ 18.19万 - 项目类别:
Continuing Grant
Collaborative Research: A Novel Laboratory Approach for Exploring Contact Ice Nucleation
合作研究:探索接触冰核的新实验室方法
- 批准号:
2346198 - 财政年份:2024
- 资助金额:
$ 18.19万 - 项目类别:
Standard Grant
Collaborative Research: A Novel Laboratory Approach for Exploring Contact Ice Nucleation
合作研究:探索接触冰核的新实验室方法
- 批准号:
2346197 - 财政年份:2024
- 资助金额:
$ 18.19万 - 项目类别:
Standard Grant
Collaborative Research: Laboratory and Modeling Studies to Resolve a Grand Challenge for Upper Atmospheric Science
合作研究:实验室和模型研究解决高层大气科学的巨大挑战
- 批准号:
2312192 - 财政年份:2023
- 资助金额:
$ 18.19万 - 项目类别:
Standard Grant
Collaborative Research: Aeolian Grain Entrainment Over Flexible Vegetation Canopies: Theoretical Models, Laboratory Experiments and Fieldwork
合作研究:灵活植被冠层的风沙颗粒夹带:理论模型、实验室实验和实地考察
- 批准号:
2327916 - 财政年份:2023
- 资助金额:
$ 18.19万 - 项目类别:
Continuing Grant
Collaborative Research: Roles of lithology and water on deep continental crustal rheology from a natural setting and laboratory experiments
合作研究:自然环境和实验室实验中岩性和水对深部大陆地壳流变学的作用
- 批准号:
2234125 - 财政年份:2023
- 资助金额:
$ 18.19万 - 项目类别:
Standard Grant
Collaborative Research: Aggregation and Electrification in a Laboratory-scale Volcanic Plume
合作研究:实验室规模火山羽流中的聚集和带电
- 批准号:
2311330 - 财政年份:2023
- 资助金额:
$ 18.19万 - 项目类别:
Standard Grant