Imprecise Probability and Valid Statistical Inference
不精确的概率和有效的统计推断
基本信息
- 批准号:2051225
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-15 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This research project will advance the foundations of statistical, data-driven uncertainty quantification based on imprecise probabilities. The complexity of the problems faced by social, behavioral, and economic scientists makes direct theoretical investigations virtually impossible, so progress relies heavily on data analysis and statistical inference. However, the recent replication crisis in science has created confusion about and distrust in statistics. Among the statistical factors contributing to the replication crisis is the lack of a solid foundation of statistics. The two dominant schools of thought, frequentist and Bayesian, are very different, but both rely on precise probabilities. The use of precise probabilities for drawing inference about unknowns based on data, however, has been shown to be invalid in a specific sense that threatens replicability. The shift from precise to imprecise probabilities for statistical inference will have broad positive impacts and create new research opportunities in fields beyond statistics and the social, behavioral, and economic sciences. The project will use the online Researchers.One platform for dissemination of results. Publicly available software will be created. The project also will provide valuable training and experience to graduate students and an early-career researcher.A high-level goal of this research project is to create a single theory of statistical inference based on imprecise probabilities. This research project will focus on a framework that uses provably valid, data-dependent, imprecise (or non-additive) probabilities to quantify uncertainty and draw inferences about unknowns. The investigator will demonstrate that this entire framework can be cast in terms of one of the simplest imprecise probability models, namely, possibility measures, and this simplicity benefits practitioners in various ways. The investigator will prove that, roughly, every exact or conservative frequentist procedure corresponds to a valid imprecise probability, fully establishing the fundamental nature of imprecise probabilities in statistical inference. The investigator also will develop new and powerful imprecise probability-based methods for two general and challenging statistical problems: structure learning in high dimensions and inference without a statistical model.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该研究项目将推进基于不精确概率的统计,数据驱动的不确定性量化的基础。社会、行为和经济科学家所面临的问题的复杂性使得直接的理论研究几乎不可能,因此研究的进展在很大程度上依赖于数据分析和统计推断。 然而,最近的科学复制危机造成了对统计的混乱和不信任。 造成复制危机的统计因素之一是缺乏坚实的统计基础。 两个占主导地位的思想流派,频率论和贝叶斯,是非常不同的,但都依赖于精确的概率。然而,使用精确的概率来根据数据对未知数进行推断,在威胁可复制性的特定意义上,已经被证明是无效的。 从精确到不精确的统计推断概率的转变将产生广泛的积极影响,并在统计学和社会,行为和经济科学之外的领域创造新的研究机会。 该项目将使用在线研究人员。一个平台,用于传播结果。 将创建公开可用的软件。该项目还将为研究生和早期职业研究人员提供宝贵的培训和经验。该研究项目的高级目标是创建基于不精确概率的统计推断的单一理论。该研究项目将侧重于一个框架,该框架使用可证明有效的,数据依赖的,不精确的(或非加性)概率来量化不确定性并对未知数进行推断。 研究人员将证明,这整个框架可以铸造在一个最简单的不精确的概率模型,即,可能性措施,这种简单性有利于从业者在各种方式。 研究者将证明,粗略地说,每一个精确的或保守的频率论程序都对应于一个有效的不精确概率,从而充分确立了统计推断中不精确概率的基本性质。 该研究员还将为两个具有挑战性的一般统计问题开发新的和强大的基于不精确概率的方法:高维结构学习和无统计模型的推理。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Direct and approximately valid probabilistic inference on a class of statistical functionals
- DOI:10.1016/j.ijar.2022.09.011
- 发表时间:2021-12
- 期刊:
- 影响因子:0
- 作者:Leonardo Cella;Ryan Martin
- 通讯作者:Leonardo Cella;Ryan Martin
Valid inferential models for prediction in supervised learning problems
用于预测监督学习问题的有效推理模型
- DOI:10.1016/j.ijar.2022.08.001
- 发表时间:2022
- 期刊:
- 影响因子:3.9
- 作者:Cella, Leonardo;Martin, Ryan
- 通讯作者:Martin, Ryan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ryan Martin其他文献
Likelihood-free Bayesian inference on the minimum clinically important difference
关于最小临床重要差异的无似然贝叶斯推断
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Nicholas Syring;Ryan Martin - 通讯作者:
Ryan Martin
Empirical Priors and Posterior Concentration Rates for a Monotone Density
单调密度的经验先验和后验集中率
- DOI:
10.1007/s13171-018-0147-5 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Ryan Martin - 通讯作者:
Ryan Martin
GENERAL THEORY OF INFERENTIAL MODELS II. MARGINAL INFERENCE
推理模型的一般理论 II.
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Ryan Martin;Jing;Chuanhai Liu;Indiana University - 通讯作者:
Indiana University
Convergence of an iterative algorithm to the nonparametric MLE of a mixing distribution
迭代算法向混合分布的非参数 MLE 的收敛
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0.8
- 作者:
Minwoo Chae;Ryan Martin;S. Walker - 通讯作者:
S. Walker
Valid and efficient imprecise-probabilistic inference with partial priors, II. General framework
具有部分先验的有效且高效的不精确概率推理,II。
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Ryan Martin - 通讯作者:
Ryan Martin
Ryan Martin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ryan Martin', 18)}}的其他基金
Collaborative Research: New Developments in Direct Probabilistic Inference on Interest Parameters
合作研究:兴趣参数直接概率推理的新进展
- 批准号:
1811802 - 财政年份:2018
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: New statistically-motivated solutions to classical inverse problems
协作研究:经典反问题的新统计驱动解决方案
- 批准号:
1611791 - 财政年份:2016
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: New statistically-motivated solutions to classical inverse problems
协作研究:经典反问题的新统计驱动解决方案
- 批准号:
1737929 - 财政年份:2016
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Optimal Bayesian Concentration Rates from Double Empirical Priors
协作研究:来自双重经验先验的最佳贝叶斯浓度
- 批准号:
1737933 - 财政年份:2016
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Optimal Bayesian Concentration Rates from Double Empirical Priors
协作研究:来自双重经验先验的最佳贝叶斯浓度
- 批准号:
1507073 - 财政年份:2015
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Prior-free probabilistic inferential methods for "large-p-small-n" linear regression problems
合作研究:“大-p-小-n”线性回归问题的无先验概率推理方法
- 批准号:
1208833 - 财政年份:2012
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
相似海外基金
Conference: Northeast Probability Seminar 2023-2025
会议:东北概率研讨会2023-2025
- 批准号:
2331449 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
CAREER: Optimal Transport Beyond Probability Measures for Robust Geometric Representation Learning
职业生涯:超越概率测量的最佳传输以实现稳健的几何表示学习
- 批准号:
2339898 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Conference: Cincinnati Symposium on Probability 2024
会议:2024 年辛辛那提概率研讨会
- 批准号:
2413604 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Conference: Midwest Probability Colloquium 2023-2025
会议:2023-2025 年中西部概率研讨会
- 批准号:
2335784 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Random Matrix Theory: Free Probability Theory and beyond
随机矩阵理论:自由概率论及其他理论
- 批准号:
23K20800 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
The research on the stability of the density functions for the existence probability of orbits
轨道存在概率密度函数的稳定性研究
- 批准号:
23K03185 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Some topics in Analysis and Probability in Metric Measure Spaces, Random Matrices, and Diffusions
度量测度空间、随机矩阵和扩散中的分析和概率中的一些主题
- 批准号:
2247117 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Conference: Northeast Probability Seminar 2022
会议:2022年东北概率研讨会
- 批准号:
2243505 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Measure Transportation And Notions Of Dimensionality In High Dimensional Probability
在高维概率中测量传输和维数概念
- 批准号:
2331920 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
LEAPS-MPS: Some Applications of Free Probability and Random Matrix Theory
LEAPS-MPS:自由概率和随机矩阵理论的一些应用
- 批准号:
2316836 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant