Collaborative Research: Optimal Bayesian Concentration Rates from Double Empirical Priors
协作研究:来自双重经验先验的最佳贝叶斯浓度
基本信息
- 批准号:1737933
- 负责人:
- 金额:$ 8.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Statisticians frequently encounter problems that involve complicated models with high-dimensional parameters, particularly in "big data" settings. From a Bayesian perspective, it is imperative in these problems that the prior distribution be chosen to sit in a good position. Information about where is a good starting position can come from the data. There is a potential danger with this basic strategy, namely, that a double use of data might cause the model to track the data too closely, resulting on over fitting. To avoid this, the PIs introduce a regularization technique that suitably re-weights the likelihood, preventing the model from learning too quickly. This general "double empirical Bayes" strategy, where the prior is centered on the data and the likelihood is re-weighted, will be applied to several important and challenging high-dimensional problems, including estimation of sparse high-dimensional precision matrices, which is relevant to estimation of large complex networks. In this project, the PIs will develop this new double empirical Bayes framework for inference on high-dimensional parameters with a relatively low "complexity" or "effective dimension". For example, in function estimation problems, posited smoothness on the function is a constraint on its complexity. The first step of the double empirical Bayes strategy is to use a prior, indexed by the complexity of the parameter, centered at a complexity-specific estimate of the parameter based on data. To prevent the posterior from tracking the data too closely, the second step is to re-weight the likelihood to be combined with the data-dependent prior. The result is a sort of posterior distribution on the parameter space, and the PIs will provide general conditions for this posterior to concentrate around the truth at optimal rates. An additional advantage of this new approach is that the complexity-specific priors, for suitable centering, can be taken of relatively simple form, which facilitates computation. The PIs will investigate the double empirical Bayes analysis of several important high-dimensional inference problems, including density and function estimation, variable selection problems in non-linear models, and estimation of sparse precision matrices. Software will be developed for each application.
统计学家经常遇到涉及高维参数的复杂模型的问题,特别是在“大数据”设置中。从贝叶斯的角度来看,在这些问题中,先验分布必须选择在一个好的位置。关于哪里是一个好的开始位置的信息可以来自数据。这种基本策略存在一个潜在的危险,即数据的双重使用可能会导致模型过于紧密地跟踪数据,从而导致过度拟合。为了避免这种情况,PI引入了一种正则化技术,可以适当地重新加权可能性,防止模型学习得太快。这种一般的“双经验贝叶斯”策略,先验知识以数据为中心,似然性被重新加权,将被应用于几个重要的和具有挑战性的高维问题,包括稀疏高维精度矩阵的估计,这与大型复杂网络的估计有关。在这个项目中,PI将开发这种新的双经验贝叶斯框架,用于以相对较低的“复杂性”或“有效维度”对高维参数进行推断。例如,在函数估计问题中,函数上的假定平滑性是对其复杂性的约束。双经验贝叶斯策略的第一步是使用先验,由参数的复杂性索引,以基于数据的参数的复杂性特定估计为中心。为了防止后验过于接近数据,第二步是重新加权与数据相关先验相结合的可能性。结果是参数空间上的一种后验分布,PI将为该后验分布提供一般条件,以最佳速率集中在真相周围。这种新方法的另一个优点是,对于合适的中心化,特定于复杂性的先验可以采用相对简单的形式,这有利于计算。PI将研究几个重要的高维推理问题的双经验贝叶斯分析,包括密度和函数估计,非线性模型中的变量选择问题,以及稀疏精度矩阵的估计。将为每个应用程序开发软件。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ryan Martin其他文献
Likelihood-free Bayesian inference on the minimum clinically important difference
关于最小临床重要差异的无似然贝叶斯推断
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Nicholas Syring;Ryan Martin - 通讯作者:
Ryan Martin
Empirical Priors and Posterior Concentration Rates for a Monotone Density
单调密度的经验先验和后验集中率
- DOI:
10.1007/s13171-018-0147-5 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Ryan Martin - 通讯作者:
Ryan Martin
GENERAL THEORY OF INFERENTIAL MODELS II. MARGINAL INFERENCE
推理模型的一般理论 II.
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Ryan Martin;Jing;Chuanhai Liu;Indiana University - 通讯作者:
Indiana University
Convergence of an iterative algorithm to the nonparametric MLE of a mixing distribution
迭代算法向混合分布的非参数 MLE 的收敛
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0.8
- 作者:
Minwoo Chae;Ryan Martin;S. Walker - 通讯作者:
S. Walker
Valid and efficient imprecise-probabilistic inference with partial priors, II. General framework
具有部分先验的有效且高效的不精确概率推理,II。
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Ryan Martin - 通讯作者:
Ryan Martin
Ryan Martin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ryan Martin', 18)}}的其他基金
Imprecise Probability and Valid Statistical Inference
不精确的概率和有效的统计推断
- 批准号:
2051225 - 财政年份:2021
- 资助金额:
$ 8.74万 - 项目类别:
Standard Grant
Collaborative Research: New Developments in Direct Probabilistic Inference on Interest Parameters
合作研究:兴趣参数直接概率推理的新进展
- 批准号:
1811802 - 财政年份:2018
- 资助金额:
$ 8.74万 - 项目类别:
Standard Grant
Collaborative Research: New statistically-motivated solutions to classical inverse problems
协作研究:经典反问题的新统计驱动解决方案
- 批准号:
1611791 - 财政年份:2016
- 资助金额:
$ 8.74万 - 项目类别:
Standard Grant
Collaborative Research: New statistically-motivated solutions to classical inverse problems
协作研究:经典反问题的新统计驱动解决方案
- 批准号:
1737929 - 财政年份:2016
- 资助金额:
$ 8.74万 - 项目类别:
Standard Grant
Collaborative Research: Optimal Bayesian Concentration Rates from Double Empirical Priors
协作研究:来自双重经验先验的最佳贝叶斯浓度
- 批准号:
1507073 - 财政年份:2015
- 资助金额:
$ 8.74万 - 项目类别:
Standard Grant
Collaborative Research: Prior-free probabilistic inferential methods for "large-p-small-n" linear regression problems
合作研究:“大-p-小-n”线性回归问题的无先验概率推理方法
- 批准号:
1208833 - 财政年份:2012
- 资助金额:
$ 8.74万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Mechanics of Optimal Biomimetic Torene Plates and Shells with Ultra-high Genus
合作研究:超高属度最优仿生Torene板壳力学
- 批准号:
2323415 - 财政年份:2024
- 资助金额:
$ 8.74万 - 项目类别:
Standard Grant
Collaborative Research: Integrating Optimal Function and Compliant Mechanisms for Ubiquitous Lower-Limb Powered Prostheses
合作研究:将优化功能和合规机制整合到无处不在的下肢动力假肢中
- 批准号:
2344765 - 财政年份:2024
- 资助金额:
$ 8.74万 - 项目类别:
Standard Grant
Collaborative Research: Can Irregular Structural Patterns Beat Perfect Lattices? Biomimicry for Optimal Acoustic Absorption
合作研究:不规则结构模式能否击败完美晶格?
- 批准号:
2341950 - 财政年份:2024
- 资助金额:
$ 8.74万 - 项目类别:
Standard Grant
Collaborative Research: Integrating Optimal Function and Compliant Mechanisms for Ubiquitous Lower-Limb Powered Prostheses
合作研究:将优化功能和合规机制整合到无处不在的下肢动力假肢中
- 批准号:
2344766 - 财政年份:2024
- 资助金额:
$ 8.74万 - 项目类别:
Standard Grant
Collaborative Research: Mechanics of Optimal Biomimetic Torene Plates and Shells with Ultra-high Genus
合作研究:超高属度最优仿生Torene板壳力学
- 批准号:
2323414 - 财政年份:2024
- 资助金额:
$ 8.74万 - 项目类别:
Standard Grant
Collaborative Research: Can Irregular Structural Patterns Beat Perfect Lattices? Biomimicry for Optimal Acoustic Absorption
合作研究:不规则结构模式能否击败完美晶格?
- 批准号:
2341951 - 财政年份:2024
- 资助金额:
$ 8.74万 - 项目类别:
Standard Grant
Collaborative Research: EAGER--Evaluation of Optimal Mesonetwork Design for Monitoring and Predicting North American Monsoon (NAM) Convection Using Observing System Simulation
合作研究:EAGER——利用观测系统模拟监测和预测北美季风(NAM)对流的最佳中观网络设计评估
- 批准号:
2308410 - 财政年份:2023
- 资助金额:
$ 8.74万 - 项目类别:
Standard Grant
Collaborative Research: ECCS: Small: Personalized RF Sensing: Learning Optimal Representations of Human Activities and Ethogram on the Fly
合作研究:ECCS:小型:个性化射频传感:学习人类活动的最佳表示和动态行为图
- 批准号:
2233503 - 财政年份:2023
- 资助金额:
$ 8.74万 - 项目类别:
Standard Grant
Collaborative Research: Parabolic Monge-Ampère Equations, Computational Optimal Transport, and Geometric Optics
合作研究:抛物线 Monge-AmpeÌre 方程、计算最优传输和几何光学
- 批准号:
2246606 - 财政年份:2023
- 资助金额:
$ 8.74万 - 项目类别:
Standard Grant
Collaborative Research: An Optimal Algorithm for Orthogonal Eigenvectors of Symmetric Tridiagonals
协作研究:对称三对角线正交特征向量的最优算法
- 批准号:
2309596 - 财政年份:2023
- 资助金额:
$ 8.74万 - 项目类别:
Standard Grant














{{item.name}}会员




