A Network Approach For Interpreting Social Landscapes
解释社会景观的网络方法
基本信息
- 批准号:2051541
- 负责人:
- 金额:$ 23.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Humans are in many ways defined by their social interactions with others. Indeed, the heart of human adaptive systems lies in peoples’ use of social networks to facilitate solutions to collective problems like resource shortfalls, information acquisition and dissemination, political turmoil, and conflict resolution. Material culture—clothing, artwork, jewelry—is often used to advertise important information about one’s personal and group identity within a social network. One way in which people do this is to adopt or manipulate the style of an object to distinguish themselves from others or more closely identify themselves with others. Archaeology is uniquely equipped, through the study of artifact style, to track the development of social networks across vast expanses of space and time. Within this broader context, Dr. Charles Egeland of the University of North Carolina at Greensboro, along with several colleagues, will develop a methodology based on artificial intelligence to identify stylistic similarities among digital images of artifacts. The level of stylistic similarity among artifacts will be input into custom-coded program plugins that can produce visual, graph-based representations of the pattern and strength of social ties between archaeological sites. Two graduate students will be trained to apply artificial intelligence and software integration in a social science setting. The data, artificial intelligence methodology, and plugins generated by this project will be freely accessible online by other users, and the technique can eventually be applied to any object represented by a 2D digital image. Ultimately, this project will help clarify how humans construct and use social networks to meet challenges. Dr. Egeland and his research team will examine how Paleolithic people used material culture to construct social networks and navigate the rapidly changing environments. The researcher will lead a team of archaeologists, paleoclimatologists, and computer scientists to (1) assemble a database of ~200 digital images of engraved artifacts; (2) construct an open-access, web-based application that uses artificial intelligence to identify stylistic patterns among the digital representations of the artifacts; and (3) develop custom plugins for an open-source graph analysis platform to produce visual representations of, and quantitative descriptors at multiple scales. With these data, the research team will explore how geography, environmental uncertainty, and population density influenced how people constructed and used their social networks to regulate social boundaries and offset resource shortages.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在许多方面,人类是由他们与他人的社会互动来定义的。事实上,人类适应系统的核心在于人们利用社会网络来促进解决资源短缺、信息获取和传播、政治动荡和冲突解决等集体问题。物质文化——服装、艺术品、珠宝——经常被用来在社交网络中宣传个人和群体身份的重要信息。人们这样做的一种方式是采用或操纵一个对象的风格来区分自己和他人,或者更紧密地将自己与他人认同。考古学具有独特的条件,通过对人工制品风格的研究,可以在广阔的空间和时间范围内追踪社会网络的发展。在这个更广泛的背景下,北卡罗来纳大学格林斯博罗分校的查尔斯·埃格兰博士(Charles Egeland)将与几位同事一起开发一种基于人工智能的方法,以识别人工制品数字图像之间的风格相似性。文物之间的风格相似程度将被输入到定制编码的程序插件中,这些插件可以生成考古遗址之间社会联系模式和强度的可视化、基于图形的表示。两名研究生将接受培训,在社会科学背景下应用人工智能和软件集成。该项目生成的数据、人工智能方法和插件将由其他用户免费在线访问,该技术最终可以应用于任何由2D数字图像表示的对象。最终,这个项目将有助于弄清人类如何构建和使用社交网络来应对挑战。埃格兰博士和他的研究小组将研究旧石器时代的人们如何利用物质文化来构建社会网络,并在快速变化的环境中导航。研究人员将带领一个由考古学家、古气候学家和计算机科学家组成的团队:(1)建立一个包含约200幅雕刻文物数字图像的数据库;(2)构建一个开放访问的基于web的应用程序,该应用程序使用人工智能来识别人工制品数字表示中的风格模式;(3)为开源图形分析平台开发定制插件,以生成多尺度的可视化表示和定量描述符。有了这些数据,研究小组将探索地理、环境不确定性和人口密度如何影响人们如何构建和使用他们的社会网络来调节社会边界和抵消资源短缺。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Charles Egeland其他文献
Charles Egeland的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Charles Egeland', 18)}}的其他基金
Paleoanthropological Investigations in Northern Armenia
亚美尼亚北部的古人类学调查
- 批准号:
0936385 - 财政年份:2009
- 资助金额:
$ 23.7万 - 项目类别:
Standard Grant
相似国自然基金
EnSite array指导下对Stepwise approach无效的慢性房颤机制及消融径线设计的实验研究
- 批准号:81070152
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:面上项目
相似海外基金
Understanding The Political Representation of Men: A Novel Approach to Making Politics More Inclusive
了解男性的政治代表性:使政治更具包容性的新方法
- 批准号:
EP/Z000246/1 - 财政年份:2025
- 资助金额:
$ 23.7万 - 项目类别:
Research Grant
CAREER: Real-Time First-Principles Approach to Understanding Many-Body Effects on High Harmonic Generation in Solids
职业:实时第一性原理方法来理解固体高次谐波产生的多体效应
- 批准号:
2337987 - 财政年份:2024
- 资助金额:
$ 23.7万 - 项目类别:
Continuing Grant
CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
- 批准号:
2338749 - 财政年份:2024
- 资助金额:
$ 23.7万 - 项目类别:
Standard Grant
SWIFT-SAT: Unlimited Radio Interferometry: A Hardware-Algorithm Co-Design Approach to RAS-Satellite Coexistence
SWIFT-SAT:无限无线电干涉测量:RAS 卫星共存的硬件算法协同设计方法
- 批准号:
2332534 - 财政年份:2024
- 资助金额:
$ 23.7万 - 项目类别:
Standard Grant
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
- 批准号:
2316612 - 财政年份:2024
- 资助金额:
$ 23.7万 - 项目类别:
Standard Grant
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
- 批准号:
2316615 - 财政年份:2024
- 资助金额:
$ 23.7万 - 项目类别:
Standard Grant
Postdoctoral Fellowship: EAR-PF: Establishing a new eruption classification with a multimethod approach
博士后奖学金:EAR-PF:用多种方法建立新的喷发分类
- 批准号:
2305462 - 财政年份:2024
- 资助金额:
$ 23.7万 - 项目类别:
Fellowship Award
「生きづらさ」を抱える妊産婦に対するnon-stigmatizing approachの開発
为正在经历“生活困难”的孕妇制定一种非侮辱性的方法
- 批准号:
24K14025 - 财政年份:2024
- 资助金额:
$ 23.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structure-Focused Multi-task Learning Approach for structural pattern recognition and analysis
用于结构模式识别和分析的以结构为中心的多任务学习方法
- 批准号:
24K20789 - 财政年份:2024
- 资助金额:
$ 23.7万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
A mobile health solution in combination with behavioral change approach to improve vaccination coverage and timeliness in Bangladesh: A cluster randomized control trial
移动健康解决方案与行为改变方法相结合,以提高孟加拉国的疫苗接种覆盖率和及时性:集群随机对照试验
- 批准号:
24K20168 - 财政年份:2024
- 资助金额:
$ 23.7万 - 项目类别:
Grant-in-Aid for Early-Career Scientists