The First Billion Years of the Geodynamo

地球发电机的第一个十亿年

基本信息

  • 批准号:
    2051550
  • 负责人:
  • 金额:
    $ 46.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-04-01 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

Earth's magnetic field, generated in the liquid iron core, shields the atmosphere from particles streaming from the Sun, known as the “solar wind". Without this shield, the atmosphere would have been eroded, and water would have been lost, especially when Earth was young and solar winds were intense. Hence, knowledge of Earth's earliest magnetic field can provide unique insight into the evolution of our planet's core and atmosphere. Because water is essential to life as we know it, this knowledge also bears on the origin of Earth's habitability. The only known material that can accurately record this early magnetic history is the mineral zircon, now found as tiny grains in younger sedimentary rocks. Some of these zircons are remarkable because they contain even smaller inclusions that can preserve signals of the ancient magnetic field from billions of years ago. But because these zircons are so small - only a few times thicker than a human hair - the measurement of their magnetism is extremely challenging. The investigators have developed and applied new techniques to characterize the nature of magnetic inclusions in zircons and to retrieve their magnetic signals, using a host of highly sensitive instruments. Their measurements indicate the presence of a magnetic field at least 4.2 billion years ago. These data indicate atmospheric shielding was in place. They also place constraints on the physical conditions in the core that resulted in the generation of a strong magnetic field. The investigators will fill gaps in the magnetic field history, generating data from new zircon localities in Western Australia, India and southern Africa. They will work with a team of international collaborators spanning 6 countries in multidisciplinary laboratory studies. The team will then use these new data to test the fidelity of the magnetic history, and to further explore the implications for magnetic shielding and Earth evolution. The work will support graduate and undergraduate students who will receive broad training in the field and in multidisciplinary analyses, and will include outreach to Rochester secondary schools through programs hosted for instructors and students.Knowledge of the earliest history of the geomagnetic field can provide key insight into our understanding of the evolution of the core, atmosphere and Earth's habitability. The only known materials that can be accurately dated and that are able to record this history on the multi-hundred-of-million-year time scales required to advance our understanding of these fundamental issues of Earth evolution are Eoarchean to Hadean zircons bearing minute magnetic inclusions that are now found in younger sedimentary units. However, the magnetic measurement of zircons, and interrogations of their magnetizations to determine if they preserve primary signals, are formidable technical challenges requiring a multidisciplinary approach. The investigators have recently presented new paleomagnetic, electron microscope, geochemical, and paleointensity data that indicate the presence of primary magnetite inclusions in select zircons from the Jack Hills of Western Australia. These new data further support that select Jack Hills zircons record primary magnetic signals of the geodynamo, with a record extending back in time to ~4.2 billion years ago. These analyses thus indicate that shielding of the atmosphere by the magnetosphere was in place very early in Earth history. The new analyses also suggest a strong magnetic field in the Late Hadean at ~4 billion years ago which could be a signal that chemical precipitation in the core was powering the geodynamo. The team will use a paleomagnetic approach to further test and fill gaps in the paleointensity record building on recent discoveries of Eoarchean to Hadean detrital zircons at other global sites. Specifically, they will generate records spanning hundreds-of-millions of years from new localities in Western Australia, India and southern Africa. They will work with a team of international collaborators spanning 6 countries in multidisciplinary laboratory studies [including light and scanning electron microscopy, focused ion beam slice and view and lift-outs, transmission electron microscopy, magneto-optical Kerr effect measurements, ultra-sensitive 3-component direct current superconducting quantum interference device (SQUID) magnetometry, scanning SQUID microscope magnetometry, sensitive high-resolution ion microprobe (SHRIMP) analyses, and secondary-ion mass spectrometry (SIMS)]. The team will use these new data to test the internal fidelity of each record, test consistency between records, and further explore the implications for planetary magnetic shielding and chemical evolution of the core. The work will support graduate and undergraduate students who will receive broad training in multidisciplinary analyses. The work will contribute to Ph.D. and M.S. theses. The investigators will continue outreach to Rochester secondary schools by hosting programs for instructors and students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
地球的磁场是在液态铁芯中产生的,它屏蔽了从太阳流出的颗粒(称为“太阳风”)的颗粒。没有这种盾牌,大气就会发出,水会流失,尤其是当地球年轻而太阳风强烈的时候。因此,对地球最早的磁场的了解可以为我们星球的核心和气氛的演变提供独特的见解。由于水对我们所知的生命至关重要,因此这些知识也依赖于地球可居住的起源。唯一可以准确记录此早期磁历史的唯一已知材料是矿物锆石,现在被发现为年轻沉积岩中的微小谷物。这些锆石中的一些是显着的,因为它们包含甚至可以保留数十亿年前古代磁场信号的较小夹杂物。但是,由于这些锆石太小了 - 仅比人的头发厚几次 - 磁性的测量极具挑战性。研究人员已经开发并应用了新技术来表征锆石中磁性夹杂物的性质,并使用许多高度敏感的仪器来检索其磁信号。它们的测量表明至少42亿年前存在磁场。这些数据表明大气屏蔽已经到位。他们还对核心的物理条件放置了限制,从而导致了强磁场的产生。研究人员将填补磁场历史上的空白,从而产生来自西澳大利亚,印度和南非新锆石地区的数据。他们将与跨越6个国家 /地区的国际合作伙伴团队合作。然后,团队将使用这些新数据来测试磁历史的忠诚度,并进一步探索对磁屏蔽和地球演化的影响。这项工作将支持将在该领域和多学科分析中接受广泛培训的毕业生和本科生,并通过为教师和学生提供的计划包括向罗切斯特中学的宣传。了解地磁领域的最早历史可以为我们对我们对核心,大气层和地球的发展的理解提供关键的见解。唯一可以准确过时的材料能够在促进我们对这些地球进化的这些基本问题的理解所需的数百万年度尺度上记录这一历史的材料,这是对携带较小磁性包含物的Hadean Zircons的eoarchian,这些磁性含量现在在年轻的沉积单元中发现。但是,锆石的磁性测量以及对它们是否保留主要信号的磁化的询问是需要多学科方法的正式技术挑战。研究者最近介绍了新的古磁,电子显微镜,地球化学和古意志数据,这些数据表明来自西澳大利亚州杰克山的精选锆石中存在原代磁铁矿夹杂物。这些新数据进一步支持,选择杰克山锆石记录了地​​球上的主要磁信号,并且记录及时延伸至约42亿年前。因此,这些分析表明,磁层对大气的屏蔽在地球历史的早期就已经存在。新的分析还表明,晚期约40亿年前的Hadean磁场很强,这可能表明核心中的化学沉淀在为Geodynamo提供动力。该小组将使用一种古磁方法来进一步测试和填补Paleysensity唱片建筑的空白,这是对Eoarchian最近在其他全球地点的Hadean碎屑锆石的发现。具体而言,他们将从西澳大利亚,印度和南部非洲的新地区产生跨越数十亿年的记录。他们将与一支跨越6个国家的国际合作者一起进行多学科实验室研究(包括光和扫描电子显微镜,聚焦的离子束切片,视图和升降机,传输电子显微镜,磁光kerr效应测量,超敏感的3个组件电流超级结合量式元素(Squid squid squid squid squid),高分辨率离子微探针(虾)分析和次级离子质谱法(SIMS)]。该团队将使用这些新数据来测试每个记录的内部保真度,测试记录之间的一致性,并进一步探索对行星磁屏蔽和核心化学演变的影响。这项工作将支持将在多学科分析中接受广泛培训的毕业生和本科生。这项工作将有助于博士学位。和M.S.这些。调查人员将通过主持讲师和学生的计划继续向罗切斯特中学推广。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响评估标准,被视为通过评估而被视为珍贵的支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Tarduno其他文献

Past and future preservation of the terrestrial hydrosphere by Earth’s magnetic field
地球磁场过去和未来对陆地水圈的保护
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    John Tarduno;Eric Blackman and Hirokuni Oda
  • 通讯作者:
    Eric Blackman and Hirokuni Oda

John Tarduno的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Tarduno', 18)}}的其他基金

Collaborative Research: Archeomagnetism of southern Africa and dynamo modeling: Testing the hypothesis of South Atlantic Anomaly-Large Low Shear Velocity Province Agency
合作研究:南部非洲的考古地磁学和发电机建模:检验南大西洋异常-大低切变速度省机构的假设
  • 批准号:
    2201460
  • 财政年份:
    2022
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Geomagnetic field strength and stability between 500 and 800 Ma: Constraining inner core growth
合作研究:500 至 800 Ma 之间的地磁场强度和稳定性:限制内核生长
  • 批准号:
    1828817
  • 财政年份:
    2019
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Continuing Grant
The First Billion Years of the Geodynamo
地球发电机的第一个十亿年
  • 批准号:
    1656348
  • 财政年份:
    2017
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Continuing Grant
The nature of the Ediacaran to early Cambrian geomagnetic field
埃迪卡拉纪至早寒武世地磁场的性质
  • 批准号:
    1520681
  • 财政年份:
    2015
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Standard Grant
Archeomagnetism of Southern Africa: Implications for Longevity of the South Atlantic Anomaly
南部非洲的考古地磁学:对南大西洋异常长期存在的影响
  • 批准号:
    1448227
  • 财政年份:
    2015
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Standard Grant
Neoarchean to Early Proterozoic evolution of Earth's core: Paleomagnetic tests using dikes and sills of the Zimbabwe craton
地核的新太古代到早元古代演化:利用津巴布韦克拉通的岩墙和岩台​​进行的古地磁测试
  • 批准号:
    1045651
  • 财政年份:
    2011
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Continuing Grant
The ultra-warm Arctic ca. 90 million years ago
超温暖的北极大约。
  • 批准号:
    1107801
  • 财政年份:
    2011
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Standard Grant
MRI: Development of a SERF Atomic Magnetometer for Paleomagnetic Applications
MRI:开发用于古地磁应用的 SERF 原子磁力计
  • 批准号:
    1039846
  • 财政年份:
    2010
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Standard Grant
The First Billion Years of the Geodynamo
地球发电机的第一个十亿年
  • 批准号:
    1015269
  • 财政年份:
    2010
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Continuing Grant
Iron Age (300-1800 AD) Geomagnetic Paleointensity of Southern Africa
铁器时代(公元 300-1800 年)南部非洲的地磁古强度
  • 批准号:
    0838185
  • 财政年份:
    2009
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

十亿像素编码计算智能成像研究
  • 批准号:
    62271283
  • 批准年份:
    2022
  • 资助金额:
    54.00 万元
  • 项目类别:
    面上项目
面向十亿像素视频智能处理的软硬件协同优化架构研究
  • 批准号:
    62205176
  • 批准年份:
    2022
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
十亿像素编码计算智能成像研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
真核生物在Boring Billion期间的宏演化模式研究
  • 批准号:
    42272001
  • 批准年份:
    2022
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目
十亿量级单片CMOS图像传感器超高速读出关键技术研究
  • 批准号:
    62171367
  • 批准年份:
    2021
  • 资助金额:
    64 万元
  • 项目类别:
    面上项目

相似海外基金

The First Billion Years
第一个十亿年
  • 批准号:
    2277533
  • 财政年份:
    2019
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Studentship
Deep learning: the first billion years with next generation Telescopes
深度学习:下一代望远镜的第一个十亿年
  • 批准号:
    FL180100060
  • 财政年份:
    2019
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Australian Laureate Fellowships
Unveiling the first billion years: enabling epoch of reionisation science
揭开第一个十亿年的面纱:开启再电离科学时代
  • 批准号:
    FT180100321
  • 财政年份:
    2019
  • 资助金额:
    $ 46.5万
  • 项目类别:
    ARC Future Fellowships
Engineering planetary habitability: Earth’s first billion years
工程行星宜居性:地球第一个十亿年
  • 批准号:
    DP170100715
  • 财政年份:
    2017
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Discovery Projects
The First Billion Years of the Geodynamo
地球发电机的第一个十亿年
  • 批准号:
    1656348
  • 财政年份:
    2017
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了