Collaborative Research: Geomagnetic field strength and stability between 500 and 800 Ma: Constraining inner core growth
合作研究:500 至 800 Ma 之间的地磁场强度和稳定性:限制内核生长
基本信息
- 批准号:1828817
- 负责人:
- 金额:$ 67.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-15 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Earth's magnetic field protects the planet from solar particles that would otherwise erode the atmosphere. Thus, the magnetic field is thought to be an essential factor ensuring long-term planetary habitability. Today, this geomagnetic field is powered by growth of the solid inner core. But thermal models suggest Earth has not always had a solid inner core; the time of the onset of inner core growth has ranged from 500 million to more than 2.5 billion years ago. This represents a fundamental unknown about the planet. Arguably the best way to investigate this question is to use "paleomagnetism", the record of the ancient magnetic field trapped in rocks and crystals as they form. Such data have motivated the hypothesis that the geomagnetic field, and the magnetic shielding of the atmosphere from solar particles, almost collapsed 565 million years ago, but then the field slowly recovered. This event may record the birth of the solid inner core. This hypothesis will be tested through studies of rocks ranging in age from 800 to 500 million years old found in Australia, Canada and the United States. The collaborative work will involve a team of 5 scientists at 3 institutions (including an underrepresented minority and woman scientist), and will be integrated into education and outreach efforts at each university, including efforts to expand opportunities for first-generation and historically underrepresented individuals. The time of Earth's inner core nucleation (ICN) is unknown and thus represents a first-order problem in our understanding of the planet. For decades the inner core was assumed to be billions of years old. However, viable core thermal conductivity values now span a factor of 3, with the highest values compatible with ICN onset between approximately 800 and 500 million years ago. These onset ages are predicted by many recent thermal evolution models, but a paucity of paleofield strength data has thwarted efforts seeking to determine if there is a sign of a young inner core. Recent paleomagnetic data record an unprecedented low in time-averaged geomagnetic field strength 565 million years ago that is greater than 10 times lower than the strength of the present geomagnetic field. The ultra-low field intensity is accompanied by an ultra-high reversal frequency and other indicators of unusual field behavior in 15 other Latest Precambrian-Cambrian igneous and sedimentary units. These observations and recent modeling results are the basis for the hypothesis that the geomagnetic field approached collapse in late Precambrian/early Cambrian times (i.e., the ratio of the magnetic energy to kinetic energy is less than 1) coincident with the onset of ICN. Hence, the inner core may be young. This hypothesis will be tested through the study of 4 igneous provinces emplaced between about 500 and 800 million years ago, in Australia, the US and the Northwest Territories (Canada). State-of-the-art paleomagnetic directional and paleointensity data, including single silicate crystal analyses, and U-Pb radiometric age data will allow a synoptic view of the geodynamo during the youngest predicted ages of ICN. The work will involve a team (5 PIs/co-PIs at 3 institutions) including an underrepresented minority and woman scientist. The work will be integrated into undergraduate and graduate education and outreach efforts at each university, including efforts to expand opportunities for first-generation and historically underrepresented individuals. Student teams will visit and conduct analyses in each of the laboratories, comparing and contrasting techniques. The project will be integrated into university-specific undergraduate courses in preparation for field and laboratory investigations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
地球磁场保护地球不受太阳粒子的影响,否则太阳粒子会侵蚀大气层。因此,磁场被认为是确保行星长期宜居性的重要因素。今天,这个地磁场是由固体内核的增长提供动力的。但热模型表明,地球并不总是有一个坚实的内核;内核开始生长的时间从5亿年前到25亿年前不等。这代表了对这个星球的一个根本的未知。可以说,研究这个问题的最好方法是使用“古磁学”,即在岩石和晶体形成时被捕获的古代磁场的记录。这些数据推动了这样一种假设,即5.65亿年前,地磁场和大气层对太阳粒子的磁屏蔽几乎崩溃,但后来磁场慢慢恢复。这一事件可能记录了固体内核的诞生。这一假设将通过研究在澳大利亚、加拿大和美国发现的年龄从8亿到5亿年不等的岩石来验证。这项合作工作将由3个机构的5名科学家组成(包括一名未被充分代表的少数民族和女科学家),并将纳入每所大学的教育和外展工作,包括努力扩大第一代和历史上未被充分代表的个人的机会。地球内核成核(ICN)的时间是未知的,因此在我们对地球的理解中代表了一个一级问题。几十年来,人们一直认为地核有几十亿年的历史。然而,可行的岩心热导率值现在跨越了3倍,最高值与ICN发生在大约8亿到5亿年前相一致。最近的许多热演化模型都预测了这些起始年龄,但由于缺乏古磁场强度数据,无法确定是否存在年轻内核的迹象。最近的古地磁数据记录了5.65亿年前史无前例的低时间平均地磁场强度,比现在的地磁场强度低10倍以上。在其他15个最新前寒武纪-寒武纪火成岩和沉积单元中,超低磁场强度伴随着超高的反转频率和其他异常的磁场行为指标。这些观测结果和最近的模拟结果为ICN发生的前寒武纪晚期/早寒武纪地磁场接近崩溃(即磁能与动能之比小于1)的假设提供了依据。因此,内核可能很年轻。这一假设将通过对位于澳大利亚、美国和西北地区(加拿大)的4个火成岩省的研究进行验证,这些火成岩省位于大约5亿至8亿年前。最先进的古地磁方向和古强度数据,包括单硅酸盐晶体分析,以及U-Pb辐射年龄数据,将使我们对ICN最年轻预测年龄期间的地球动力学有一个概貌的认识。这项工作将涉及一个团队(3个机构的5名pi /共同pi),其中包括一名未被充分代表的少数民族和女科学家。这项工作将被纳入每所大学的本科和研究生教育和推广工作,包括努力扩大第一代和历史上代表性不足的个人的机会。学生团队将访问并在每个实验室进行分析,比较和对比技术。该项目将整合到大学特定的本科课程中,为实地和实验室调查做准备。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Tarduno其他文献
Past and future preservation of the terrestrial hydrosphere by Earth’s magnetic field
地球磁场过去和未来对陆地水圈的保护
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
John Tarduno;Eric Blackman and Hirokuni Oda - 通讯作者:
Eric Blackman and Hirokuni Oda
John Tarduno的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Tarduno', 18)}}的其他基金
Collaborative Research: Archeomagnetism of southern Africa and dynamo modeling: Testing the hypothesis of South Atlantic Anomaly-Large Low Shear Velocity Province Agency
合作研究:南部非洲的考古地磁学和发电机建模:检验南大西洋异常-大低切变速度省机构的假设
- 批准号:
2201460 - 财政年份:2022
- 资助金额:
$ 67.85万 - 项目类别:
Continuing Grant
The First Billion Years of the Geodynamo
地球发电机的第一个十亿年
- 批准号:
2051550 - 财政年份:2021
- 资助金额:
$ 67.85万 - 项目类别:
Continuing Grant
The First Billion Years of the Geodynamo
地球发电机的第一个十亿年
- 批准号:
1656348 - 财政年份:2017
- 资助金额:
$ 67.85万 - 项目类别:
Continuing Grant
The nature of the Ediacaran to early Cambrian geomagnetic field
埃迪卡拉纪至早寒武世地磁场的性质
- 批准号:
1520681 - 财政年份:2015
- 资助金额:
$ 67.85万 - 项目类别:
Standard Grant
Archeomagnetism of Southern Africa: Implications for Longevity of the South Atlantic Anomaly
南部非洲的考古地磁学:对南大西洋异常长期存在的影响
- 批准号:
1448227 - 财政年份:2015
- 资助金额:
$ 67.85万 - 项目类别:
Standard Grant
Neoarchean to Early Proterozoic evolution of Earth's core: Paleomagnetic tests using dikes and sills of the Zimbabwe craton
地核的新太古代到早元古代演化:利用津巴布韦克拉通的岩墙和岩台进行的古地磁测试
- 批准号:
1045651 - 财政年份:2011
- 资助金额:
$ 67.85万 - 项目类别:
Continuing Grant
The ultra-warm Arctic ca. 90 million years ago
超温暖的北极大约。
- 批准号:
1107801 - 财政年份:2011
- 资助金额:
$ 67.85万 - 项目类别:
Standard Grant
MRI: Development of a SERF Atomic Magnetometer for Paleomagnetic Applications
MRI:开发用于古地磁应用的 SERF 原子磁力计
- 批准号:
1039846 - 财政年份:2010
- 资助金额:
$ 67.85万 - 项目类别:
Standard Grant
The First Billion Years of the Geodynamo
地球发电机的第一个十亿年
- 批准号:
1015269 - 财政年份:2010
- 资助金额:
$ 67.85万 - 项目类别:
Continuing Grant
Iron Age (300-1800 AD) Geomagnetic Paleointensity of Southern Africa
铁器时代(公元 300-1800 年)南部非洲的地磁古强度
- 批准号:
0838185 - 财政年份:2009
- 资助金额:
$ 67.85万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Dipole Tilt Effect on Kelvin-Helmholtz Instability and Its Associated Ionospheric and Geomagnetic Signatures
合作研究:偶极子倾斜对开尔文-亥姆霍兹不稳定性及其相关电离层和地磁特征的影响
- 批准号:
2307204 - 财政年份:2023
- 资助金额:
$ 67.85万 - 项目类别:
Standard Grant
Collaborative Research: Dipole Tilt Effect on Kelvin-Helmholtz Instability and Its Associated Ionospheric and Geomagnetic Signatures
合作研究:偶极子倾斜对开尔文-亥姆霍兹不稳定性及其相关电离层和地磁特征的影响
- 批准号:
2307205 - 财政年份:2023
- 资助金额:
$ 67.85万 - 项目类别:
Standard Grant
Collaborative Research: Exploiting Geomagnetic Records to Describe Past and Present Ocean Variability
合作研究:利用地磁记录来描述过去和现在的海洋变化
- 批准号:
2402116 - 财政年份:2023
- 资助金额:
$ 67.85万 - 项目类别:
Standard Grant
Collaborative Research: Dipole Tilt Effect on Kelvin-Helmholtz Instability and Its Associated Ionospheric and Geomagnetic Signatures
合作研究:偶极子倾斜对开尔文-亥姆霍兹不稳定性及其相关电离层和地磁特征的影响
- 批准号:
2307203 - 财政年份:2023
- 资助金额:
$ 67.85万 - 项目类别:
Standard Grant
Collaborative Research: ANSWERS: Impacts of Atmospheric Waves and Geomagnetic Disturbances on Quiet-time and Storm-time Space Weather
合作研究:答案:大气波和地磁扰动对平静时期和风暴时期空间天气的影响
- 批准号:
2149695 - 财政年份:2022
- 资助金额:
$ 67.85万 - 项目类别:
Standard Grant
Collaborative Research: ANSWERS: Impacts of Atmospheric Waves and Geomagnetic Disturbances on Quiet-time and Storm-time Space Weather
合作研究:答案:大气波和地磁扰动对平静时期和风暴时期空间天气的影响
- 批准号:
2149698 - 财政年份:2022
- 资助金额:
$ 67.85万 - 项目类别:
Standard Grant
Collaborative Research: ANSWERS: Impacts of Atmospheric Waves and Geomagnetic Disturbances on Quiet-time and Storm-time Space Weather
合作研究:答案:大气波和地磁扰动对平静时期和风暴时期空间天气的影响
- 批准号:
2149696 - 财政年份:2022
- 资助金额:
$ 67.85万 - 项目类别:
Standard Grant
Collaborative Research: ANSWERS: Impacts of Atmospheric Waves and Geomagnetic Disturbances on Quiet-time and Storm-time Space Weather
合作研究:答案:大气波和地磁扰动对平静时期和风暴时期空间天气的影响
- 批准号:
2149697 - 财政年份:2022
- 资助金额:
$ 67.85万 - 项目类别:
Standard Grant
Collaborative Research: ANSWERS: Prediction of Geoeffective Solar Eruptions, Geomagnetic Indices, and Thermospheric Density Using Machine Learning Methods
合作研究:答案:使用机器学习方法预测地球有效太阳喷发、地磁指数和热层密度
- 批准号:
2149750 - 财政年份:2022
- 资助金额:
$ 67.85万 - 项目类别:
Standard Grant
Collaborative Research: ANSWERS: Prediction of Geoeffective Solar Eruptions, Geomagnetic Indices, and Thermospheric Density Using Machine Learning Methods
合作研究:答案:使用机器学习方法预测地球有效太阳喷发、地磁指数和热层密度
- 批准号:
2149747 - 财政年份:2022
- 资助金额:
$ 67.85万 - 项目类别:
Standard Grant














{{item.name}}会员




