CDS&E: Collaborative Research: An integrated computational suite for large-scale modeling of crystal nucleation

CDS

基本信息

  • 批准号:
    2053235
  • 负责人:
  • 金额:
    $ 31.08万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

This project is funded by the Condensed-Matter-and-Materials-Theory program in the Division of Materials Research and by the programs in Computational and Data-Enabled Science and Engineering and Process Systems, Reaction Engineering, and Molecular Thermodynamics in the Division of Chemical, Bioengineering, Environmental, and Transport Systems.Crystal nucleation is one of the most ubiquitous processes in nature; it is a phenomenon that also has countless consequences in pharmaceutical, solar energy, and semiconductor manufacturing technologies. Despite its significance, understanding crystal nucleation remains a grand-challenge problem, both for the atomistic-scale spatial resolution required and the widely ranging timescales that are encountered in its analysis. Compounding these challenges, definitive explanations of the fundamental physical mechanisms at work during nucleation continue to elude researchers. Recent advances in computational algorithms and hardware have created new opportunities for devising practical strategies to further the reliability and impact of molecular modeling as an effective tool to elucidate the fundamental mechanisms underlying crystal nucleation. Therefore, the collaborative research group behind this proposal identified the need for developing a critical cyber infrastructure that offers (1) the versatility necessary to model crystal nucleation across different materials and crystallization environments, (2) the computational efficiency required to simulate naturally occurring and industrially relevant crystallization processes, and (3) the scalability needed to bridge the gap between simulation predictions and experimental measurements. In addition to pharmaceutical, energy, and semiconductor applications, such an infrastructure will pave the way for understanding polymer-controlled crystallization and biomineralization, will make it possible to develop new aircraft anti-icing strategies, and will facilitate the design of bio-inspired materials.This research will bring together academic experts in molecular simulation method development and implementation, aiming to deploy an integrated, large-scale open-source computational suite that enables modeling crystal nucleation under realistic conditions. This package will integrate a cohesive set of advanced computational tools through an implementation and distribution of these methods as individual modules of LAMMPS, which allows large-scale applications to a broad range of nucleation problems with state-of-the-art quantum-accurate potentials. The methodology and software will be validated through (1) examining the role of surface topography on ice nucleation and benchmarking the nucleation efficiency of experimentally identified inorganic ice nucleators, and (2) modeling the nucleation of NaCl and alkaline earth carbonates from aqueous solution. The proposed computational toolkit will enhance current understanding of the thermodynamics and kinetics of nanoscopic crystal nucleation and subsequent crystal growth, with direct applications in surface engineering, reduction of membrane fouling induced by mineral scaling, inorganic mineralization, and materials synthesis. The products of this research will be made available to the broader scientific community in the form of open-source software. The investigators will engage in outreach efforts by working with high-school students through a Science Olympiad event, EarthDate broadcasts, and Chemistry Club demonstrations. Special efforts will be deployed in areas with a large presence of underserved populations, thus fostering diverse and equitable interest and involvement in STEM disciplines.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目由材料研究部的凝聚态物质和材料理论项目以及化学、生物工程、环境和运输系统部的计算和数据科学与工程、过程系统、反应工程和分子热力学项目资助。晶体成核是自然界中最普遍的过程之一;这一现象在制药、太阳能和半导体制造技术中也产生了无数后果。尽管它的意义,理解晶体成核仍然是一个巨大的挑战问题,无论是原子尺度的空间分辨率所需的和广泛的时间尺度,在其分析中遇到的。除了这些挑战之外,对成核过程中工作的基本物理机制的明确解释仍然困扰着研究人员。计算算法和硬件的最新进展为设计实用策略创造了新的机会,以进一步提高分子建模的可靠性和影响力,作为阐明晶体成核的基本机制的有效工具。因此,该提案背后的合作研究小组确定了开发关键网络基础设施的需求,该基础设施提供(1)在不同材料和结晶环境中模拟晶体成核所需的多功能性,(2)模拟自然发生和工业相关结晶过程所需的计算效率,以及(3)弥合模拟预测和实验测量之间的差距所需的可缩放性。除了制药,能源和半导体应用外,这样的基础设施将为理解聚合物控制的结晶和生物矿化铺平道路,将使开发新的飞机防冰策略成为可能,并将促进生物启发材料的设计。这项研究将汇集分子模拟方法开发和实施的学术专家,旨在部署一个集成的,大规模开源计算套件,能够在现实条件下模拟晶体成核。该软件包将通过将这些方法作为LAMMPS的各个模块进行实施和分发,集成一套有凝聚力的先进计算工具,从而可以大规模应用于具有最先进的量子精确势的各种成核问题。该方法和软件将通过以下方式进行验证:(1)检查表面形貌对冰成核的作用,并对实验确定的无机冰成核剂的成核效率进行基准测试,以及(2)模拟NaCl和碱土碳酸盐从水溶液中的成核。建议的计算工具包将提高目前的理解纳米晶体成核和随后的晶体生长的热力学和动力学,在表面工程,减少膜污染引起的矿物结垢,无机矿化,和材料合成的直接应用。这项研究的成果将以开放源码软件的形式提供给更广泛的科学界。调查人员将通过科学奥林匹克活动,地球日期广播和化学俱乐部演示与高中学生合作进行外展工作。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effect of sodium chloride adsorption on the surface premelting of ice
氯化钠吸附对冰表面预熔的影响
  • DOI:
    10.1039/d2cp02277j
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Berrens, Margaret L.;Bononi, Fernanda C.;Donadio, Davide
  • 通讯作者:
    Donadio, Davide
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Davide Donadio其他文献

Force and heat current formulas for many-body potentials in molecular dynamics simulation with applications to thermal conductivity calculations
分子动力学模拟中多体势的力和热流公式及其在热导率计算中的应用
Organizing Chaos: Boosting Thermoelectric Properties by Ordering the Clathrate Framework of Ba8Cu16As30
组织混沌:通过有序 Ba8Cu16As30 的笼形框架来提高热电性能
  • DOI:
    10.1021/acs.chemmater.4c00419
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Philip Yox;Frank Cerasoli;Arka Sarkar;Genevieve Amobi;Gayatri Viswanathan;Jackson Voyles;Oleg l. Lebedev;Davide Donadio;Kirill Kovnir
  • 通讯作者:
    Kirill Kovnir
Generative deep learning for predicting ultrahigh lattice thermal conductivity materials
用于预测超高晶格热导率材料的生成式深度学习
  • DOI:
    10.1038/s41524-025-01592-8
  • 发表时间:
    2025-04-11
  • 期刊:
  • 影响因子:
    11.900
  • 作者:
    Liben Guo;Yuanbin Liu;Zekun Chen;Hongao Yang;Davide Donadio;Bingyang Cao
  • 通讯作者:
    Bingyang Cao
Decisive role of nuclear quantum effects on surface mediated water dissociation at finite temperature
核量子效应对有限温度下表面介导的水解离的决定性作用
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y. Litman;Davide Donadio;M. Ceriotti;Mariana Rossi
  • 通讯作者:
    Mariana Rossi
Bimodal Grain-Size Scaling of Thermal Transport in Polycrystalline Graphene from Large-Scale Molecular Dynamics Simulations
大规模分子动力学模拟中多晶石墨烯热传输的双峰晶粒尺寸缩放
  • DOI:
    10.1021/acs.nanolett.7b01742
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    10.8
  • 作者:
    Zheyong Fan;Petri Hirvonen;Luiz Felipe C. Pereira;Mikko M. Ervasti;Ken R. Elder;Davide Donadio;Ari Harju;Tapio Ala-Nissila
  • 通讯作者:
    Tapio Ala-Nissila

Davide Donadio的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Davide Donadio', 18)}}的其他基金

3D Nanoprinting via Controlled Assembly of Molecules
通过受控分子组装进行 3D 纳米打印
  • 批准号:
    2304986
  • 财政年份:
    2023
  • 资助金额:
    $ 31.08万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348998
  • 财政年份:
    2025
  • 资助金额:
    $ 31.08万
  • 项目类别:
    Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348999
  • 财政年份:
    2025
  • 资助金额:
    $ 31.08万
  • 项目类别:
    Standard Grant
Collaborative Research: Investigating Southern Ocean Sea Surface Temperatures and Freshening during the Late Pliocene and Pleistocene along the Antarctic Margin
合作研究:调查上新世晚期和更新世沿南极边缘的南大洋海面温度和新鲜度
  • 批准号:
    2313120
  • 财政年份:
    2024
  • 资助金额:
    $ 31.08万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFDEB-NERC: Warming's silver lining? Thermal compensation at multiple levels of organization may promote stream ecosystem stability in response to drought
合作研究:NSFDEB-NERC:变暖的一线希望?
  • 批准号:
    2312706
  • 财政年份:
    2024
  • 资助金额:
    $ 31.08万
  • 项目类别:
    Standard Grant
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
  • 批准号:
    2318855
  • 财政年份:
    2024
  • 资助金额:
    $ 31.08万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding Environmental and Ecological Controls on Carbon Export and Flux Attenuation near Bermuda
合作研究:了解百慕大附近碳输出和通量衰减的环境和生态控制
  • 批准号:
    2318940
  • 财政年份:
    2024
  • 资助金额:
    $ 31.08万
  • 项目类别:
    Standard Grant
Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
  • 批准号:
    2319097
  • 财政年份:
    2024
  • 资助金额:
    $ 31.08万
  • 项目类别:
    Standard Grant
Collaborative Research: URoL:ASC: Determining the relationship between genes and ecosystem processes to improve biogeochemical models for nutrient management
合作研究:URoL:ASC:确定基因与生态系统过程之间的关系,以改进营养管理的生物地球化学模型
  • 批准号:
    2319123
  • 财政年份:
    2024
  • 资助金额:
    $ 31.08万
  • 项目类别:
    Standard Grant
Collaborative Research: Subduction Megathrust Rheology: The Combined Roles of On- and Off-Fault Processes in Controlling Fault Slip Behavior
合作研究:俯冲巨型逆断层流变学:断层上和断层外过程在控制断层滑动行为中的综合作用
  • 批准号:
    2319848
  • 财政年份:
    2024
  • 资助金额:
    $ 31.08万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Pilot: PowerCyber: Computational Training for Power Engineering Researchers
协作研究:Cyber​​Training:试点:PowerCyber​​:电力工程研究人员的计算培训
  • 批准号:
    2319895
  • 财政年份:
    2024
  • 资助金额:
    $ 31.08万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了