Learning Combinatorial Non-Convex Structures in Data: Statistical Foundations and Computational Methods
学习数据中的组合非凸结构:统计基础和计算方法
基本信息
- 批准号:2053333
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Learning latent structures in complex data sets is a crucial task in computational and data-enabled sciences. For applications in computer vision, genomics, and social networks, the hidden structures are often of discrete nature, making traditional algorithms not scalable to modern large data sets. To address this computational challenge, this research will introduce statistical methodologies to develop new models and fast algorithms for recovering discrete structures in data. The integration of computational and statistical perspectives will lead to not only advancement in theory, but also statistical packages for learning tasks. Moreover, multiple components of the research will bring societal benefits such as uncovering threats to online anonymity and understanding social polarization. This project will also provide high-quality training and research opportunities to next-generation data scientists.More specifically, the research will focus on three types of problems: graph and shape matching, graph layout problems, and mixture models. Central to all these problems is the inference of permutations from noisy, incomplete observations. Due to the combinatorial nature of permutations and other hidden structures, the associated optimization problems are highly non-convex and intractable in the worst case. To develop efficient algorithms, this research will take an average-case perspective and employ a variety of techniques including spectral methods, convex relaxations, and non-convex local search. Theoretically, the fundamental limits of the proposed problems and algorithms will be characterized in terms of the trade-off between statistical and computational efficiency. On the practical front, all implementations of new methods will be made open-source for interdisciplinary applications such as alignment of biological networks and object matching in computer vision.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
学习复杂数据集中的潜在结构是计算科学和数据使能科学中的一项重要任务。对于计算机视觉、基因组学和社会网络中的应用,隐藏的结构往往是离散的,这使得传统算法无法扩展到现代大数据集。为了解决这一计算挑战,本研究将引入统计方法来开发新的模型和快速算法来恢复数据中的离散结构。计算和统计观点的结合不仅将导致理论上的进步,而且还将导致学习任务的统计包。此外,这项研究的多个组成部分将带来社会效益,如揭示在线匿名的威胁和了解社会两极分化。该项目还将为下一代数据科学家提供高质量的培训和研究机会。更具体地说,该项目将重点研究三类问题:图形和形状匹配、图形布局问题和混合模型。所有这些问题的核心是从嘈杂的、不完整的观测中推断出排列。由于排列和其他隐藏结构的组合性质,相关的优化问题在最坏的情况下是高度非凸的和难以处理的。为了开发高效的算法,本研究将从平均情况的角度出发,使用包括谱方法、凸松弛和非凸局部搜索在内的各种技术。从理论上讲,提出的问题和算法的基本限制将体现在统计效率和计算效率之间的权衡。在实践方面,所有新方法的实施都将是开放源代码的,用于跨学科应用,如生物网络的比对和计算机视觉中的对象匹配。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Learning mixtures of permutations: Groups of pairwise comparisons and combinatorial method of moments
学习排列组合:成对比较组和矩组合方法
- DOI:10.1214/22-aos2185
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Mao, Cheng;Wu, Yihong
- 通讯作者:Wu, Yihong
Random Graph Matching with Improved Noise Robustness
- DOI:
- 发表时间:2021-01
- 期刊:
- 影响因子:0
- 作者:Cheng Mao;M. Rudelson;K. Tikhomirov
- 通讯作者:Cheng Mao;M. Rudelson;K. Tikhomirov
Exact matching of random graphs with constant correlation
- DOI:10.1007/s00440-022-01184-3
- 发表时间:2021-10
- 期刊:
- 影响因子:2
- 作者:Cheng Mao;M. Rudelson;K. Tikhomirov
- 通讯作者:Cheng Mao;M. Rudelson;K. Tikhomirov
Spectral Graph Matching and Regularized Quadratic Relaxations I Algorithm and Gaussian Analysis
- DOI:10.1007/s10208-022-09570-y
- 发表时间:2022-06
- 期刊:
- 影响因子:3
- 作者:Z. Fan;Cheng Mao;Yihong Wu;Jiaming Xu
- 通讯作者:Z. Fan;Cheng Mao;Yihong Wu;Jiaming Xu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cheng Mao其他文献
Label-free image-based detection of drug resistance with optofluidic time-stretch microscopy
利用光流控时间拉伸显微镜进行无标记图像耐药性检测
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Kobayashi;Hirofumi Lei;Cheng Mao;Ailin Jiang;Yiyue Guo;Baoshan Ozeki;Yasuyuki Goda;Keisuke - 通讯作者:
Keisuke
Towards Optimal Estimation of Bivariate Isotonic Matrices with Unknown Permutations
具有未知排列的二元等渗矩阵的最优估计
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:4.5
- 作者:
Cheng Mao;A. Pananjady;M. Wainwright - 通讯作者:
M. Wainwright
Rheological and adhesive improvements of terminal blend rubberized asphalt via fumed silica nanoparticle modification
- DOI:
10.1016/j.conbuildmat.2024.138543 - 发表时间:
2024-10-25 - 期刊:
- 影响因子:
- 作者:
Shengxiong Zhou;Baohao Shi;Lin Kong;Cheng Mao;Chuanqi Yan;Changfa Ai - 通讯作者:
Changfa Ai
Detection of Dense Subhypergraphs by Low-Degree Polynomials
用低次多项式检测稠密子超图
- DOI:
10.48550/arxiv.2304.08135 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
A. Dhawan;Cheng Mao;Alexander S. Wein - 通讯作者:
Alexander S. Wein
Spatial distribution of typical persistent organic pollutants in South China Sea by economical solid phase microextraction with hierarchical porous biochar
基于分级多孔生物炭的经济型固相微萃取技术对南海典型持久性有机污染物的空间分布研究
- DOI:
10.1016/j.jhazmat.2025.138262 - 发表时间:
2025-07-15 - 期刊:
- 影响因子:11.300
- 作者:
Jinglin Chen;Yixin Kuang;Xiaoying Feng;Cheng Mao;Suxin Zhou;Weidong Zhai;Juan Zheng;Gangfeng Ouyang - 通讯作者:
Gangfeng Ouyang
Cheng Mao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
The Combinatorial Role of Irx3 and Irx4 in Non-Compaction Cardiomyopathy
Irx3 和 Irx4 在非致密化心肌病中的联合作用
- 批准号:
487201 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Studentship Programs
The novel combinatorial role of Irx3 and Irx4 in ventricular non-compaction cardiomyopathy
Irx3 和 Irx4 在心室致密化不全心肌病中的新组合作用
- 批准号:
420908 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Operating Grants
Develop combinatorial non-viral and viral CRISPR delivery for lung diseases
开发针对肺部疾病的组合非病毒和病毒 CRISPR 递送
- 批准号:
10274832 - 财政年份:2018
- 资助金额:
$ 20万 - 项目类别:
A combinatorial brain and behavioural approach to distinguish treatment responders and non-responders in chronic pain
一种组合大脑和行为方法来区分慢性疼痛的治疗反应者和无反应者
- 批准号:
365538 - 财政年份:2016
- 资助金额:
$ 20万 - 项目类别:
Studentship Programs
Application of non-commutative algebras to a public key encryption scheme and combinatorial construction of universal hash functions
非交换代数在公钥加密方案中的应用和通用散列函数的组合构造
- 批准号:
15K00004 - 财政年份:2015
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Combinatorial studies of non-noble electrocatalysts for PEM fuel cells
PEM燃料电池非贵金属电催化剂的组合研究
- 批准号:
307474-2004 - 财政年份:2006
- 资助金额:
$ 20万 - 项目类别:
Strategic Projects - Group
Combinatorial studies of non-noble electrocatalysts for PEM fuel cells
PEM燃料电池非贵金属电催化剂的组合研究
- 批准号:
307474-2004 - 财政年份:2005
- 资助金额:
$ 20万 - 项目类别:
Strategic Projects - Group
Combinatorial studies of non-noble electrocatalysts for PEM fuel cells
PEM燃料电池非贵金属电催化剂的组合研究
- 批准号:
307474-2004 - 财政年份:2004
- 资助金额:
$ 20万 - 项目类别:
Strategic Projects - Group
Solid phase synthesis of non-peptidic organic molecules for SAR studies of combinatorial chemistry libraries
用于组合化学库 SAR 研究的非肽有机分子的固相合成
- 批准号:
183629-1995 - 财政年份:1997
- 资助金额:
$ 20万 - 项目类别:
Industrially Oriented Research Grants
Solid phase synthesis of non-peptidic organic molecules for SAR studies of combinatorial chemistry libraries
用于组合化学库 SAR 研究的非肽有机分子的固相合成
- 批准号:
183629-1995 - 财政年份:1996
- 资助金额:
$ 20万 - 项目类别:
Industrially Oriented Research Grants














{{item.name}}会员




