Collaborative Research: Fusing Massive Disparate Data and Fast Surrogate Models for Probabilistic Quantification of Uncertain Hazards

协作研究:融合海量不同数据和快速替代模型以对不确定危害进行概率量化

基本信息

  • 批准号:
    2053423
  • 负责人:
  • 金额:
    $ 14万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Mitigating the impact of natural hazards, such as volcanic eruptions, earthquakes, or infectious diseases, rests on our ability to accurately quantify hazard risks in advance of their occurrence. This project will tackle this challenge and develop a new computationally feasible framework to integrate disparate field observations and computer simulations. The new framework will deliver substantial upgrades in computational efficiency for natural hazard quantification. One testbed will be the 2018 eruption of the Kilauea Volcano in Hawaii, which injured 23 people and destroyed more than 700 dwellings. For this event, extensive field observations from disparate sources, such as radar satellites, global navigation satellite system receivers, borehole tiltmeters, and seismometers, as well as large-scale computer simulations, will be used to analyze methods for volcanic hazard quantification. The methods developed in the project will be implemented in open-source software available to a wide community of scientists and engineers. The project is complemented by training for both graduate and undergraduate students. The first major roadblock for precisely quantifying uncertain natural hazards is the computational scalability of computer simulations, as they often require the numerical solution of partial differential equations on massive spatio-temporal domains with multi-dimensional input. This challenge will be overcome by developing Gaussian process (GP) emulators as a computationally feasible surrogate model to approximate outcomes of computer experiments. This approach is appealing because it not only includes parallel predictions with linear computational order with respect to the number of coordinates, but it also leverages the correlation between coordinates to enable fast predictive sampling. The second computational challenge is in fusing disparate data from multiple sources to calibrate physical models. The project will address this challenge by quantifying uncertainty in data processing and estimating the discrepancy between the physical model and reality to allow for data integration. While this project focuses on applications in natural hazard quantification, the new GP emulator, computational tools for model calibration, and data integration methods will more generally extend the applicability of data science and machine learning algorithms.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
减轻火山爆发、地震或传染病等自然灾害的影响取决于我们在灾害发生前准确量化灾害风险的能力。该项目将应对这一挑战,并开发一个新的计算可行的框架,以整合不同的实地观察和计算机模拟。 新框架将大幅提升自然灾害量化的计算效率。其中一个测试平台将是2018年夏威夷基拉韦厄火山的喷发,该喷发造成23人受伤,700多所住宅被毁。对于这次活动,将利用雷达卫星、全球导航卫星系统接收器、钻孔倾斜仪和地震仪等不同来源的广泛实地观测以及大规模计算机模拟来分析火山灾害量化方法。该项目中开发的方法将在开放源码软件中实施,供广大科学家和工程师使用。对研究生和本科生的培训是对该项目的补充。 精确量化不确定自然灾害的第一个主要障碍是计算机模拟的计算可扩展性,因为它们通常需要在具有多维输入的大规模时空域上对偏微分方程进行数值求解。这一挑战将通过开发高斯过程(GP)仿真器作为计算上可行的替代模型来近似计算机实验的结果来克服。这种方法很有吸引力,因为它不仅包括相对于坐标数量具有线性计算顺序的并行预测,而且还利用坐标之间的相关性来实现快速预测采样。第二个计算挑战是融合来自多个来源的不同数据以校准物理模型。该项目将通过量化数据处理中的不确定性和估计物理模型与现实之间的差异来应对这一挑战,以便进行数据整合。虽然该项目侧重于自然灾害量化的应用,但新的GP仿真器、模型校准计算工具和数据集成方法将更广泛地扩展数据科学和机器学习算法的适用性。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reliable emulation of complex functionals by active learning with error control
通过带有误差控制的主动学习来可靠地模拟复杂泛函
  • DOI:
    10.1063/5.0121805
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fang, Xinyi;Gu, Mengyang;Wu, Jianzhong
  • 通讯作者:
    Wu, Jianzhong
High-throughput microscopy to determine morphology, microrheology, and phase boundaries applied to phase separating coacervates
高通量显微镜可确定应用于相分离凝聚层的形态、微流变学和相边界
  • DOI:
    10.1039/d1sm01763b
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Luo, Yimin;Gu, Mengyang;Edwards, Chelsea E.;Valentine, Megan T.;Helgeson, Matthew E.
  • 通讯作者:
    Helgeson, Matthew E.
Uncertainty quantification and estimation in differential dynamic microscopy
  • DOI:
    10.1103/physreve.104.034610
  • 发表时间:
    2021-09-24
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Gu, Mengyang;Luo, Yimin;Valentine, Megan T.
  • 通讯作者:
    Valentine, Megan T.
A Theoretical Framework of the Scaled Gaussian Stochastic Process in Prediction and Calibration
  • DOI:
    10.1137/21m1409949
  • 发表时间:
    2018-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mengyang Gu;Fangzheng Xie;Long Wang
  • 通讯作者:
    Mengyang Gu;Fangzheng Xie;Long Wang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mengyang Gu其他文献

Correction: Evaluation of Schlemm’s canal with swept-source optical coherence tomography in primary angle-closure disease
  • DOI:
    10.1186/s12886-023-03062-5
  • 发表时间:
    2023-07-10
  • 期刊:
  • 影响因子:
    1.700
  • 作者:
    Xuming Ding;Lulu Huang;Cheng Peng;Li Xu;Yixin Liu;Yijie Yang;Ning Wang;Mengyang Gu;Chengyang Sun;Yue Wu;Wenyi Guo
  • 通讯作者:
    Wenyi Guo
RobustCalibration: Robust Calibration of Computer Models in R
  • DOI:
    10.32614/rj-2023-085
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mengyang Gu
  • 通讯作者:
    Mengyang Gu
Robust Uncertainty Quantification and Scalable Computation for Computer Models with Massive Output
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mengyang Gu
  • 通讯作者:
    Mengyang Gu
Analyzing Disparity and Temporal Progression of Internet Quality through Crowdsourced Measurements with Bias-Correction
通过带有偏差校正的众包测量来分析互联网质量的差异和时间进展
  • DOI:
    10.48550/arxiv.2310.16136
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hyeongseong Lee;Udit Paul;Arpit Gupta;E. Belding;Mengyang Gu
  • 通讯作者:
    Mengyang Gu
Data-Driven Model Construction for Anisotropic Dynamics of Active Matter
活性物质各向异性动力学的数据驱动模型构建
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mengyang Gu;X. Fang;Yimin Luo
  • 通讯作者:
    Yimin Luo

Mengyang Gu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348998
  • 财政年份:
    2025
  • 资助金额:
    $ 14万
  • 项目类别:
    Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348999
  • 财政年份:
    2025
  • 资助金额:
    $ 14万
  • 项目类别:
    Standard Grant
Collaborative Research: Investigating Southern Ocean Sea Surface Temperatures and Freshening during the Late Pliocene and Pleistocene along the Antarctic Margin
合作研究:调查上新世晚期和更新世沿南极边缘的南大洋海面温度和新鲜度
  • 批准号:
    2313120
  • 财政年份:
    2024
  • 资助金额:
    $ 14万
  • 项目类别:
    Standard Grant
NSF Engines Development Award: Utilizing space research, development and manufacturing to improve the human condition (OH)
NSF 发动机发展奖:利用太空研究、开发和制造来改善人类状况(OH)
  • 批准号:
    2314750
  • 财政年份:
    2024
  • 资助金额:
    $ 14万
  • 项目类别:
    Cooperative Agreement
Doctoral Dissertation Research: How New Legal Doctrine Shapes Human-Environment Relations
博士论文研究:新法律学说如何塑造人类与环境的关系
  • 批准号:
    2315219
  • 财政年份:
    2024
  • 资助金额:
    $ 14万
  • 项目类别:
    Standard Grant
Collaborative Research: Non-Linearity and Feedbacks in the Atmospheric Circulation Response to Increased Carbon Dioxide (CO2)
合作研究:大气环流对二氧化碳 (CO2) 增加的响应的非线性和反馈
  • 批准号:
    2335762
  • 财政年份:
    2024
  • 资助金额:
    $ 14万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335802
  • 财政年份:
    2024
  • 资助金额:
    $ 14万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335801
  • 财政年份:
    2024
  • 资助金额:
    $ 14万
  • 项目类别:
    Standard Grant
Collaborative Research: Holocene biogeochemical evolution of Earth's largest lake system
合作研究:地球最大湖泊系统的全新世生物地球化学演化
  • 批准号:
    2336132
  • 财政年份:
    2024
  • 资助金额:
    $ 14万
  • 项目类别:
    Standard Grant
CyberCorps Scholarship for Service: Building Research-minded Cyber Leaders
Cyber​​Corps 服务奖学金:培养具有研究意识的网络领导者
  • 批准号:
    2336409
  • 财政年份:
    2024
  • 资助金额:
    $ 14万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了