Collaborative Research: Inference and Uncertainty Quantification for High Dimensional Systems in Remote Sensing: Methods, Computation, and Applications

合作研究:遥感高维系统的推理和不确定性量化:方法、计算和应用

基本信息

  • 批准号:
    2053746
  • 负责人:
  • 金额:
    $ 12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Complex mathematical models are ubiquitous in physical, atmospheric, biological, and engineering sciences. These models, often called simulators, are used to describe complicated interactions among many variables and processes in the systems and are sometimes accompanied by massive data. The process of extracting information and knowledge from the simulators and observational data can be called an inverse problem. However, solving inverse problems and quantifying the uncertainty is challenging. This project addresses these challenges with novel methods, efficient algorithms, and software tools to enable fast simulations and inverse problem solutions. A particular application in this project is inverse problems in remote sensing. This research project integrates the advancements in statistics, applied mathematics, data science, and remote sensing. It will provide ways to assess the quality and uncertainty of remote sensing data products to address scientific hypotheses. The PIs will apply and evaluate these new methods in the context of inverse problems in remote sensing for carbon monitoring, but these methods can also be used for data-intensive inverse problems in many other areas including climatology, geophysics, and medical imaging. This project will directly train student researchers and will develop educational materials. The project findings will be shared via journal publications and conference presentations.This collaborative research project will contribute to significant advances in statistical modeling, uncertainty quantification, and efficient scalable methods to solve large-scale inverse problems associated with high-dimensional systems. The PIs will establish new methods to build statistical emulators with computational efficiency and statistical guarantees. The scalability is achieved by joint dimension reduction for both the input and output spaces, while theoretical approximation properties of the resulting emulators will be derived. The resulting emulators will facilitate large-scale simulation-based uncertainty quantification experiments for remote sensing data. This framework of statistical emulation will also be integrated into the algorithms to infer inverse problem solutions to enable faster computation. With a particular focus on high-dimensional systems encountered in remote sensing, the methods developed will lead to a new paradigm of statistical methods for complex inference problems and uncertainty quantification in remote sensing and transform the current practice of remote sensing retrieval. Open-source software for the proposed new approaches will be made available to a wide community of scientists and engineers. By partnering with collaborators in remote sensing, the methods developed in this project will be of practical utility for researchers in various applications including carbon monitoring.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
复杂的数学模型在物理、大气、生物和工程科学中无处不在。这些模型通常被称为模拟器,用于描述系统中许多变量和过程之间的复杂相互作用,有时伴随着大量数据。从模拟器和观测数据中提取信息和知识的过程可以称为逆问题。然而,解决反问题和量化的不确定性是具有挑战性的。该项目通过新颖的方法,高效的算法和软件工具来解决这些挑战,以实现快速模拟和逆问题解决方案。该项目的一个特殊应用是遥感中的逆问题。该研究项目整合了统计学,应用数学,数据科学和遥感的进步。它将提供评估遥感数据产品质量和不确定性的方法,以解决科学假设问题。PI将在碳监测遥感逆问题的背景下应用和评估这些新方法,但这些方法也可用于许多其他领域的数据密集型逆问题,包括气候学,地球物理学和医学成像。该项目将直接培训学生研究人员,并将编制教育材料。该合作研究项目将在统计建模、不确定性量化和有效的可扩展方法方面取得重大进展,以解决与高维系统相关的大规模逆问题。PI将建立新的方法来构建具有计算效率和统计保证的统计仿真器。通过对输入和输出空间的联合降维实现了可扩展性,同时将推导出所得仿真器的理论近似特性。由此产生的模拟器将促进大规模的基于模拟的遥感数据的不确定性量化实验。这种统计仿真框架也将被集成到算法中,以推断逆问题的解决方案,从而实现更快的计算。特别关注在遥感中遇到的高维系统,开发的方法将导致一个新的范例,复杂的推理问题和不确定性量化的统计方法在遥感和改造目前的做法遥感检索。将向广大科学家和工程师提供用于拟议新方法的开放源码软件。通过与遥感领域的合作者合作,该项目开发的方法将对包括碳监测在内的各种应用领域的研究人员具有实际效用。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Flow-driven spectral chaos (FSC) method for long-time integration of second-order stochastic dynamical systems
  • DOI:
    10.1016/j.cam.2021.113674
  • 发表时间:
    2021-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hugo Esquivel;A. Prakash;G. Lin
  • 通讯作者:
    Hugo Esquivel;A. Prakash;G. Lin
DAE-PINN: a physics-informed neural network model for simulating differential algebraic equations with application to power networks
DAE-PINN:一种基于物理的神经网络模型,用于模拟微分代数方程并应用于电力网络
  • DOI:
    10.1007/s00521-022-07886-y
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Moya, Christian;Lin, Guang
  • 通讯作者:
    Lin, Guang
Two-dimensional signature of images and texture classification
图像的二维签名和纹理分类
  • DOI:
    10.1098/rspa.2022.0346
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhang, Sheng;Lin, Guang;Tindel, Samy
  • 通讯作者:
    Tindel, Samy
An adaptively weighted stochastic gradient MCMC algorithm for Monte Carlo simulation and global optimization
  • DOI:
    10.1007/s11222-022-10120-3
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Wei Deng;Guang Lin;F. Liang
  • 通讯作者:
    Wei Deng;Guang Lin;F. Liang
Batch Normalization Preconditioning for Stochastic Gradient Langevin Dynamics
随机梯度 Langevin Dynamics 的批量归一化预处理
  • DOI:
    10.4208/jml.220726
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lange, Susanna;Deng, Wei;null, Qiang Ye;Lin, Guang
  • 通讯作者:
    Lin, Guang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Guang Lin其他文献

Calibration of reduced-order model for a coupled Burgers equations based on PC-EnKF
基于PC-EnKF的耦合Burgers方程降阶模型标定
Bayesian Treed Multivariate Gaussian Process With Adaptive Design: Application to a Carbon Capture Unit
具有自适应设计的贝叶斯树多元高斯过程:在碳捕获装置中的应用
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    B. Konomi;G. Karagiannis;A. Sarkar;Xin Sun;Guang Lin
  • 通讯作者:
    Guang Lin
Sensitivity analysis and stochastic simulations of non‐equilibrium plasma flow
非平衡等离子体流的敏感性分析和随机模拟
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guang Lin;G. Karniadakis
  • 通讯作者:
    G. Karniadakis
Efficient hybrid explicit-implicit learning for multiscale problems
  • DOI:
    10.1016/j.jcp.2022.111326
  • 发表时间:
    2022-10-15
  • 期刊:
  • 影响因子:
    3.800
  • 作者:
    Yalchin Efendiev;Wing Tat Leung;Guang Lin;Zecheng Zhang
  • 通讯作者:
    Zecheng Zhang
An adaptive Hessian approximated stochastic gradient MCMC method
自适应Hessian近似随机梯度MCMC方法

Guang Lin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Guang Lin', 18)}}的其他基金

Collaborative Research: Robust Deep Learning in Real Physical Space: Generalization, Scalability, and Credibility
协作研究:真实物理空间中的鲁棒深度学习:泛化性、可扩展性和可信度
  • 批准号:
    2134209
  • 财政年份:
    2021
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Collaborative research: Design and Analysis of Data-Enabled High-Order Accurate Multiscale Schemes and Parallel Simulation Toolkit for Studying Electromagnetohydrodynamic Flow
合作研究:用于研究电磁流体动力流的数据支持的高阶精确多尺度方案和并行仿真工具包的设计和分析
  • 批准号:
    1821233
  • 财政年份:
    2018
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: AMPS: Multi-Fidelity Modeling via Machine Learning for Real-time Prediction of Power System Behavior
合作研究:AMPS:通过机器学习进行多保真度建模,实时预测电力系统行为
  • 批准号:
    1736364
  • 财政年份:
    2017
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
CAREER: Uncertainty Quantification and Big Data Analysis in Interconnected Systems: Algorithms, Computations, and Applications
职业:互连系统中的不确定性量化和大数据分析:算法、计算和应用
  • 批准号:
    1555072
  • 财政年份:
    2016
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: Urban Vector-Borne Disease Transmission Demands Advances in Spatiotemporal Statistical Inference
合作研究:城市媒介传播疾病传播需要时空统计推断的进步
  • 批准号:
    2414688
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Collaborative Research: Non-Parametric Inference of Temporal Data
合作研究:时态数据的非参数推理
  • 批准号:
    2311249
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
  • 批准号:
    2415562
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: MEDIUM: General and Scalable Pluggable Type Inference
合作研究:SHF:MEDIUM:通用且可扩展的可插入类型推理
  • 批准号:
    2312263
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
  • 批准号:
    2312501
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: New Theory and Methods for High-Dimensional Multi-Task and Transfer Learning Inference
合作研究:高维多任务和迁移学习推理的新理论和新方法
  • 批准号:
    2324490
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Collaborative Research: New Theory and Methods for High-Dimensional Multi-Task and Transfer Learning Inference
合作研究:高维多任务和迁移学习推理的新理论和新方法
  • 批准号:
    2324489
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Collaborative Research: Non-Parametric Inference of Temporal Data
合作研究:时态数据的非参数推理
  • 批准号:
    2311251
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
  • 批准号:
    2312502
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了