CAREER: Uncertainty Quantification and Big Data Analysis in Interconnected Systems: Algorithms, Computations, and Applications
职业:互连系统中的不确定性量化和大数据分析:算法、计算和应用
基本信息
- 批准号:1555072
- 负责人:
- 金额:$ 40.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Uncertainty quantification (UQ) and big data analysis have received increasing attention in recent years. Extensive research effort has been devoted to these topics, and novel numerical methods have been developed to efficiently deal with large-scale data sets and complex problems with uncertainty. Both UQ and big data analysis enable us to better understand the impacts of various uncertain inputs (boundary and initial data, parameter values, geometry, network etc.) to numerical predictions. UQ and big data analysis are thus critical to many important practical problems such as climate modeling, weather prediction, ocean dynamics, and smart grids. As the data size and dimensions of parameter space increase, one of the biggest challenges in UQ computations and big data analysis is the computational cost for analyzing the data and running the simulations. For large-scale complex interconnected systems, deterministic simulations can be very time-consuming, and conducting UQ simulations further increases the simulation cost and can be prohibitively expensive. This project aims to address these critical challenges. A novel set of highly efficient UQ and big data analysis algorithms will be developed to make big data analysis and UQ simulations amenable for large-scale complex interconnected systems. The new algorithms will significantly advance the current state of the art of UQ and big data analysis methods. The project also integrates educational opportunities, including exposing a range of undergraduate students to UQ and big data, giving graduate students the advanced skills needed to apply them, and mentoring Ph.D. students to be leaders in UQ and big data education and research. The approach under development in this research project is based on scalable algorithms for multivariate Bayesian-treed Gaussian process and power network reduction; high-dimensional UQ algorithms; dynamic state estimation and model calibration for non-Gaussian noisy data; and advanced stochastic contingency analysis. The new algorithms will be based on building multi-fidelity models in both network models and probability space. Such algorithms can accommodate big data in linear time. In addition, while current contingency analysis allows only assessment of a static power grid status without considering uncertainty, the new approaches will allow analysis of contingency dynamically and probabilistically for cascade failures. The new algorithms will allow investigators to establish an efficient framework to rigorously quantify the uncertainty, analyze big data, and endow smart grid simulations with a composite error bar.
不确定性量化(UQ)和大数据分析近年来受到越来越多的关注。大量的研究工作已经投入到这些主题,并开发了新的数值方法来有效地处理大规模数据集和具有不确定性的复杂问题。UQ和大数据分析使我们能够更好地理解各种不确定输入(边界和初始数据、参数值、几何形状、网络等)对数值预测的影响。因此,UQ和大数据分析对于许多重要的实际问题至关重要,例如气候建模、天气预报、海洋动力学和智能电网。随着数据大小和参数空间维度的增加,UQ计算和大数据分析面临的最大挑战之一是分析数据和运行模拟的计算成本。对于大规模复杂的互联系统,确定性模拟可能非常耗时,并且进行UQ模拟进一步增加了模拟成本,并且可能非常昂贵。该项目旨在解决这些关键挑战。将开发一套新的高效UQ和大数据分析算法,使大数据分析和UQ模拟适用于大规模复杂的互联系统。新算法将显著推动当前UQ和大数据分析方法的发展。该项目还整合了教育机会,包括让一系列本科生接触昆士兰大学和大数据,为研究生提供应用这些知识所需的高级技能,并指导博士生成为昆士兰大学和大数据教育和研究的领导者。本研究项目开发的方法是基于多元贝叶斯树高斯过程和电网约简的可扩展算法;高维UQ算法;非高斯噪声数据的动态估计和模型标定;以及先进的随机偶然性分析。新的算法将基于在网络模型和概率空间中建立多保真度模型。这种算法可以在线性时间内适应大数据。此外,虽然目前的偶然性分析只允许评估静态电网状态,而不考虑不确定性,但新方法将允许动态和概率地分析级联故障的偶然性。新的算法将允许研究人员建立一个有效的框架来严格量化不确定性,分析大数据,并赋予智能电网模拟一个复合误差条。
项目成果
期刊论文数量(51)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Flow-driven spectral chaos (FSC) method for long-time integration of second-order stochastic dynamical systems
- DOI:10.1016/j.cam.2021.113674
- 发表时间:2021-05
- 期刊:
- 影响因子:0
- 作者:Hugo Esquivel;A. Prakash;G. Lin
- 通讯作者:Hugo Esquivel;A. Prakash;G. Lin
On the Bayesian calibration of computer model mixtures through experimental data, and the design of predictive models
通过实验数据对计算机模型混合物进行贝叶斯校准,以及预测模型的设计
- DOI:10.1016/j.jcp.2017.04.003
- 发表时间:2017
- 期刊:
- 影响因子:4.1
- 作者:Karagiannis, Georgios;Lin, Guang
- 通讯作者:Lin, Guang
A mixed upwind/central WENO scheme for incompressible two-phase flows
- DOI:10.1016/j.jcp.2019.02.043
- 发表时间:2019-06
- 期刊:
- 影响因子:0
- 作者:Ziyang Huang;G. Lin;A. Ardekani
- 通讯作者:Ziyang Huang;G. Lin;A. Ardekani
Latent transformations neural network for object view synthesis
- DOI:10.1007/s00371-019-01755-x
- 发表时间:2019-10
- 期刊:
- 影响因子:0
- 作者:Sangpil Kim;Nick Winovich;Hyung-gun Chi;Guang Lin;K. Ramani
- 通讯作者:Sangpil Kim;Nick Winovich;Hyung-gun Chi;Guang Lin;K. Ramani
Infrared Thermal Imaging-Based Crack Detection Using Deep Learning
使用深度学习进行基于红外热成像的裂纹检测
- DOI:10.1109/access.2019.2958264
- 发表时间:2019
- 期刊:
- 影响因子:3.9
- 作者:Yang Jun;Wang We;Lin Guang;Li Qing;Sun Yeqing;Sun Yixuan
- 通讯作者:Sun Yixuan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guang Lin其他文献
Calibration of reduced-order model for a coupled Burgers equations based on PC-EnKF
基于PC-EnKF的耦合Burgers方程降阶模型标定
- DOI:
10.1051/mmnp/2018023 - 发表时间:
2018 - 期刊:
- 影响因子:2.2
- 作者:
Yuepeng Wang;Yue Cheng;Zongyuan Zhang;Guang Lin - 通讯作者:
Guang Lin
Bayesian Treed Multivariate Gaussian Process With Adaptive Design: Application to a Carbon Capture Unit
具有自适应设计的贝叶斯树多元高斯过程:在碳捕获装置中的应用
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:2.5
- 作者:
B. Konomi;G. Karagiannis;A. Sarkar;Xin Sun;Guang Lin - 通讯作者:
Guang Lin
Sensitivity analysis and stochastic simulations of non‐equilibrium plasma flow
非平衡等离子体流的敏感性分析和随机模拟
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Guang Lin;G. Karniadakis - 通讯作者:
G. Karniadakis
Efficient hybrid explicit-implicit learning for multiscale problems
- DOI:
10.1016/j.jcp.2022.111326 - 发表时间:
2022-10-15 - 期刊:
- 影响因子:3.800
- 作者:
Yalchin Efendiev;Wing Tat Leung;Guang Lin;Zecheng Zhang - 通讯作者:
Zecheng Zhang
Backdiff: a diffusion model for generalized transferable protein backmapping
Backdiff:广义可转移蛋白质反向映射的扩散模型
- DOI:
10.48550/arxiv.2310.01768 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Yikai Liu;Ming Chen;Guang Lin - 通讯作者:
Guang Lin
Guang Lin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guang Lin', 18)}}的其他基金
Collaborative Research: Robust Deep Learning in Real Physical Space: Generalization, Scalability, and Credibility
协作研究:真实物理空间中的鲁棒深度学习:泛化性、可扩展性和可信度
- 批准号:
2134209 - 财政年份:2021
- 资助金额:
$ 40.08万 - 项目类别:
Continuing Grant
Collaborative Research: Inference and Uncertainty Quantification for High Dimensional Systems in Remote Sensing: Methods, Computation, and Applications
合作研究:遥感高维系统的推理和不确定性量化:方法、计算和应用
- 批准号:
2053746 - 财政年份:2021
- 资助金额:
$ 40.08万 - 项目类别:
Continuing Grant
Collaborative research: Design and Analysis of Data-Enabled High-Order Accurate Multiscale Schemes and Parallel Simulation Toolkit for Studying Electromagnetohydrodynamic Flow
合作研究:用于研究电磁流体动力流的数据支持的高阶精确多尺度方案和并行仿真工具包的设计和分析
- 批准号:
1821233 - 财政年份:2018
- 资助金额:
$ 40.08万 - 项目类别:
Standard Grant
Collaborative Research: AMPS: Multi-Fidelity Modeling via Machine Learning for Real-time Prediction of Power System Behavior
合作研究:AMPS:通过机器学习进行多保真度建模,实时预测电力系统行为
- 批准号:
1736364 - 财政年份:2017
- 资助金额:
$ 40.08万 - 项目类别:
Continuing Grant
相似海外基金
CAREER: Scalable and Robust Uncertainty Quantification using Subsampling Markov Chain Monte Carlo Algorithms
职业:使用子采样马尔可夫链蒙特卡罗算法进行可扩展且稳健的不确定性量化
- 批准号:
2340586 - 财政年份:2024
- 资助金额:
$ 40.08万 - 项目类别:
Continuing Grant
CAREER: Efficient Uncertainty Quantification in Turbulent Combustion Simulations: Theory, Algorithms, and Computations
职业:湍流燃烧模拟中的高效不确定性量化:理论、算法和计算
- 批准号:
2143625 - 财政年份:2022
- 资助金额:
$ 40.08万 - 项目类别:
Continuing Grant
CAREER: Uncertainty Quantification for Quantum Computing Algorithms
职业:量子计算算法的不确定性量化
- 批准号:
2143915 - 财政年份:2022
- 资助金额:
$ 40.08万 - 项目类别:
Continuing Grant
Conference: Support for Early Career Participants in Conference on Uncertainty Quantification for Machine Learning Integrated Physics Modeling (UQ-MLIP)
会议:为机器学习集成物理建模不确定性量化会议 (UQ-MLIP) 的早期职业参与者提供支持
- 批准号:
2227959 - 财政年份:2022
- 资助金额:
$ 40.08万 - 项目类别:
Standard Grant
CAREER: Forward and Inverse Uncertainty Quantification of Cardiovascular Fluid-Structure Dynamics via Multi-fidelity Physics-Informed Bayesian Geometric Deep Learning
职业:通过多保真物理信息贝叶斯几何深度学习对心血管流体结构动力学进行正向和逆向不确定性量化
- 批准号:
2047127 - 财政年份:2021
- 资助金额:
$ 40.08万 - 项目类别:
Continuing Grant
CAREER: A Stochastic Framework for Uncertainty Quantification on Complex Geometries: Application to Additive Manufacturing
职业:复杂几何形状不确定性量化的随机框架:在增材制造中的应用
- 批准号:
1942928 - 财政年份:2020
- 资助金额:
$ 40.08万 - 项目类别:
Standard Grant
CAREER: Uncertainty Quantification and Optimization with Hybrid Models for Molecular-to-Systems Engineering
职业:分子到系统工程的混合模型的不确定性量化和优化
- 批准号:
1941596 - 财政年份:2020
- 资助金额:
$ 40.08万 - 项目类别:
Continuing Grant
CAREER: Fast and Accurate Algorithms for Uncertainty Quantification in Large-Scale Inverse Problems
职业:大规模反问题中不确定性量化的快速准确算法
- 批准号:
1845406 - 财政年份:2019
- 资助金额:
$ 40.08万 - 项目类别:
Continuing Grant
CAREER: Improving Convective-Scale Weather Prediction through Advanced Bayesian Filtering, Verification, and Uncertainty Quantification
职业:通过高级贝叶斯过滤、验证和不确定性量化改进对流规模天气预报
- 批准号:
1848363 - 财政年份:2019
- 资助金额:
$ 40.08万 - 项目类别:
Continuing Grant
CAREER: Optimization-based Quantification of Statistical Uncertainty in Stochastic and Simulation Analysis
职业:随机和仿真分析中基于优化的统计不确定性量化
- 批准号:
1653339 - 财政年份:2017
- 资助金额:
$ 40.08万 - 项目类别:
Standard Grant