Questions in Arithmetic Combinatorics
算术组合数学问题
基本信息
- 批准号:2054214
- 负责人:
- 金额:$ 19.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The project focuses on two of the most accessible areas of mathematical research: combinatorics and number theory. Generally and broadly speaking, combinatorics focuses on counting objects that are hard to count directly, and number theory studies the rich properties of whole numbers. The proposed research aims to increase even further the use of combinatorial arguments in studying questions in number theory. The project also has an educational component, on training the next generation of mathematicians and advancing scientific literacy and public engagement with science. The project will support the activities of the Math Team of a local Title I High School. The intertwined areas of arithmetic and geometric combinatorics are the focus of this proposal. Three groups of related open problems will be investigated. The first concerns the size of sets whose Minkowski sums is contained in the group of non-zero quadratic residues modulo a given prime. The second investigates distance and sum-product questions for large subset of finite fields. The third is on obtaining a characterization of sets that exhibit near maximum growth under repeated set addition.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目侧重于数学研究中最容易触及的两个领域:组合学和数论。从广义上讲,组合学侧重于对难以直接计数的对象进行计数,而数论研究整数的丰富性质。提出的研究旨在进一步增加组合论证在研究数论问题中的应用。该项目还有一个教育组成部分,即培训下一代数学家,提高科学素养和公众对科学的参与。该项目将支持当地一所第一中学数学小组的活动。算术和几何组合的相互交织的领域是这个建议的重点。我们将研究三组相关的开放问题。第一个问题是闵可夫斯基和包含在以给定素数为模的非零二次残数群中的集合的大小。第二部分研究有限域大子集的距离和和积问题。第三部分是关于在重复集相加下表现出接近最大增长的集的一个性质。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Almost orthogonal subsets of vector spaces over finite fields
有限域上向量空间的几乎正交子集
- DOI:10.1016/j.ejc.2022.103515
- 发表时间:2022
- 期刊:
- 影响因子:1
- 作者:Mohammadi, Ali;Petridis, Giorgis
- 通讯作者:Petridis, Giorgis
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Georgios Petridis其他文献
Georgios Petridis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Georgios Petridis', 18)}}的其他基金
Direct and Inverse Problems for Cardinality Questions in Additive Combinatorics
加法组合中基数问题的正问题和反问题
- 批准号:
1723016 - 财政年份:2016
- 资助金额:
$ 19.8万 - 项目类别:
Continuing Grant
Direct and Inverse Problems for Cardinality Questions in Additive Combinatorics
加法组合中基数问题的正问题和反问题
- 批准号:
1500984 - 财政年份:2015
- 资助金额:
$ 19.8万 - 项目类别:
Continuing Grant
相似海外基金
RTG: Arithmetic, Combinatorics, and Topology of Algebraic Varieties
RTG:代数簇的算术、组合学和拓扑
- 批准号:
2231565 - 财政年份:2023
- 资助金额:
$ 19.8万 - 项目类别:
Continuing Grant
CAREER: Connections Between Tropical Geometry, Arithmetic Geometry, and Combinatorics
职业:热带几何、算术几何和组合数学之间的联系
- 批准号:
2044564 - 财政年份:2021
- 资助金额:
$ 19.8万 - 项目类别:
Continuing Grant
Degenerations and applications to moduli, arithmetic and combinatorics.
模数、算术和组合的退化和应用。
- 批准号:
502267-2017 - 财政年份:2020
- 资助金额:
$ 19.8万 - 项目类别:
Postgraduate Scholarships - Doctoral
Degenerations and applications to moduli, arithmetic and combinatorics.
模数、算术和组合的退化和应用。
- 批准号:
502267-2017 - 财政年份:2019
- 资助金额:
$ 19.8万 - 项目类别:
Postgraduate Scholarships - Doctoral
Arithmetic Combinatorics and Applications
算术组合及其应用
- 批准号:
1764081 - 财政年份:2018
- 资助金额:
$ 19.8万 - 项目类别:
Continuing Grant
Degenerations and applications to moduli, arithmetic and combinatorics.
模数、算术和组合的退化和应用。
- 批准号:
502267-2017 - 财政年份:2018
- 资助金额:
$ 19.8万 - 项目类别:
Postgraduate Scholarships - Doctoral
Degenerations and applications to moduli, arithmetic and combinatorics.
模数、算术和组合的退化和应用。
- 批准号:
502267-2017 - 财政年份:2017
- 资助金额:
$ 19.8万 - 项目类别:
Postgraduate Scholarships - Doctoral
Additive combinatorics, arithmetic algebraic geometry and finite fields
加法组合学、算术代数几何和有限域
- 批准号:
DP170100786 - 财政年份:2017
- 资助金额:
$ 19.8万 - 项目类别:
Discovery Projects
Group actions in geometric/arithmetic Combinatorics
几何/算术组合中的群动作
- 批准号:
1943257 - 财政年份:2017
- 资助金额:
$ 19.8万 - 项目类别:
Studentship
Research at the Interface of Harmonic Analysis and Arithmetic Combinatorics: Geometric Ramsey Theory and Higher Uniformity Norms
调和分析与算术组合学的接口研究:几何拉姆齐理论和更高的均匀性范数
- 批准号:
1702411 - 财政年份:2017
- 资助金额:
$ 19.8万 - 项目类别:
Continuing Grant