Arithmetic Combinatorics and Applications

算术组合及其应用

基本信息

  • 批准号:
    1764081
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-01 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

The research area of the project is arithmetic combinatorics. This has become an interdisciplinary field of research with many new emerging applications to analytic number theory, Fourier analysis, probability, computer science (e.g. elliptic curve cryptography, and pseudorandom number generators), and even theoretical physics (e.g. solid state physics). While certain themes in arithmetic combinatorics are classical in number theory, there is also focus on new structural questions that turned out to be important. Some of the useful tools (e.g. exponential sum and character sum estimates) are themselves attractive to researchers. Combinatorial problems in finite fields continue to offer many challenges, in particular questions involving orders of points on varieties over finite fields (e.g. recent developments related to the Markoff surface). This research involves different groups of people and the interaction of various branches of mathematics, with the potential of making progress on some well-known unsolved problems. The principal investigator will run a weekly seminar at graduate level on basic methods in analysis and combinatorics through explanation of research in combinatorial number theory. Special efforts would be made to attract first-generation college students.The goal of this project is to continue research on universality for nodal intersections, arithmetic progressions in multiplicative groups of finite fields, non-linear Roth type theorem, orders and density of points, on varieties over finite fields, and the theory of incomplete and short character sums. Besides the usual tools in (discrete) Fourier analysis and probability, techniques from arithmetic combinatorics were used, particularly, various versions of factorization in generalized arithmetic progressions and quantitative Nullstellensatz, sum-product theory for the exponential sum and character sum estimates, (including mixed character sums, character sums over very short intervals, and these sums with various moduli or arguments). It turns out that results from sum-product in various settings are of interest in their own right as well as they lead to new results in analytic number theory and some of the problems proposed.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的研究领域是算术组合学。随着解析数论、傅立叶分析、概率、计算机科学(如椭圆曲线密码学和伪随机数发生器),甚至理论物理(如固体物理)的许多新的应用,这已成为一个跨学科的研究领域。虽然算术组合学中的某些主题在数论中是经典的,但也有一些新的结构问题被证明是重要的。一些有用的工具(例如指数和和估计和特征和估计)本身对研究人员很有吸引力。有限域上的组合问题仍然提供了许多挑战,特别是涉及有限域上簇上的点的阶的问题(例如,与Markoff曲面有关的最新发展)。这项研究涉及不同的人群和不同数学分支的互动,有可能在一些众所周知的悬而未决的问题上取得进展。首席调查员将通过解释组合数论的研究,每周举办一次研究生级别的研讨会,讨论分析和组合学的基本方法。这个项目的目标是继续研究节点交的普适性,有限域的乘法群中的算术级数,非线性Roth型定理,点的阶和密度,有限域上的簇,以及不完全和短特征和理论。除了(离散的)傅立叶分析和概率中的常用工具外,还使用了算术组合学的技术,特别是在广义算术级数和定量Nullstellensatz中的各种形式的因式分解、指数和和的和积理论以及特征和估计(包括混合特征和、非常短间隔上的特征和以及这些具有不同模或变元的和)。事实证明,在各种环境下求和乘积的结果本身是有意义的,它们导致了解析数理论的新结果和提出的一些问题。这一奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multiplicative energy of polynomial images of intervals modulo $q$
区间模 $q$ 的多项式图像的乘性能量
On a paper of Erdös and Szekeres
埃尔多斯和塞克雷斯的论文
  • DOI:
    10.1007/s11854-018-0060-9
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bourgain, Jean;Chang, Mei-Chu
  • 通讯作者:
    Chang, Mei-Chu
On the exponential large sieve inequality for sparse sequences modulo primes
关于稀疏序列模素数的指数大筛不等式
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mei-Chu Chang其他文献

SOME PROBLEMS IN COMBINATORIAL NUMBER THEORY
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mei-Chu Chang
  • 通讯作者:
    Mei-Chu Chang
On a question of Davenport and Lewis and new character sum bounds in finite fields
  • DOI:
    10.1215/00127094-2008-056
  • 发表时间:
    2008-12
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Mei-Chu Chang
  • 通讯作者:
    Mei-Chu Chang
Character Sums in Finite Fields
  • DOI:
    10.1090/conm/518/10198
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mei-Chu Chang
  • 通讯作者:
    Mei-Chu Chang
On a problem of Arnold on uniform distribution
  • DOI:
    10.1016/j.jfa.2006.06.009
  • 发表时间:
    2007-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Mei-Chu Chang
  • 通讯作者:
    Mei-Chu Chang
Arithmetic progressions in multiplicative groups of finite fields
  • DOI:
    10.1007/s11856-017-1602-z
  • 发表时间:
    2017-11-11
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Mei-Chu Chang
  • 通讯作者:
    Mei-Chu Chang

Mei-Chu Chang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mei-Chu Chang', 18)}}的其他基金

Arithmetic Combinatorics and Applications to Number Theory
算术组合及其在数论中的应用
  • 批准号:
    1600154
  • 财政年份:
    2016
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Arithmetic combinatorics and applications to number theory
算术组合及其在数论中的应用
  • 批准号:
    1301608
  • 财政年份:
    2013
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Combinatorial number theory and applications
组合数论及其应用
  • 批准号:
    1000507
  • 财政年份:
    2010
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
The sum-product phenomenon in various groups, expanding maps and applications
不同群体中的和积现象,扩展地图和应用
  • 批准号:
    0700297
  • 财政年份:
    2007
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Combinatorial Number Theory
组合数论
  • 批准号:
    0401696
  • 财政年份:
    2004
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Faculty Awards for Women: Mathematical Sciences: Algebraic Geometry
女性教师奖:数学科学:代数几何
  • 批准号:
    9023689
  • 财政年份:
    1991
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Topics in Algebraic Geometry
数学科学:代数几何专题
  • 批准号:
    8796345
  • 财政年份:
    1987
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Topics in Algebraic Geometry
数学科学:代数几何专题
  • 批准号:
    8612365
  • 财政年份:
    1986
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant

相似海外基金

Conference on Combinatorics, Computing, Group Theory, and Applications 2022
2022 年组合学、计算、群论和应用会议
  • 批准号:
    2221946
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Combinatorics of Interacting Particles and Applications
相互作用粒子的组合学及其应用
  • 批准号:
    RGPIN-2021-02568
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
Problems in Extremal Combinatorics with Applications to Statistical Physics
极值组合问题及其在统计物理中的应用
  • 批准号:
    574977-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    University Undergraduate Student Research Awards
Combinatorics of finite-dimensional algebras, with applications to scattering amplitudes
有限维代数的组合及其在散射振幅中的应用
  • 批准号:
    RGPIN-2022-03960
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorics of Interacting Particles and Applications
相互作用粒子的组合学及其应用
  • 批准号:
    RGPIN-2021-02568
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorics and its Applications
组合学及其应用
  • 批准号:
    2054129
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Combinatorics of Interacting Particles and Applications
相互作用粒子的组合学及其应用
  • 批准号:
    DGECR-2021-00033
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Launch Supplement
CAREER: Decoupling Theory, Oscillatory Integral Theory, and Their Applications in Analytic Number Theory and Combinatorics
职业:解耦理论、振荡积分理论及其在解析数论和组合学中的应用
  • 批准号:
    2044828
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Prikry-type forcings and its applications to singular cardinal combinatorics
Prikry 型强迫及其在奇异基数组合中的应用
  • 批准号:
    20J21103
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Combinatorics of Interacting Particles and Applications
相互作用粒子的组合学及其应用
  • 批准号:
    1953891
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了