I-Corps: Determining occupant load and location through machine vision with on-device image processing

I-Corps:通过机器视觉和设备上的图像处理确定乘员负载和位置

基本信息

  • 批准号:
    2054807
  • 负责人:
  • 金额:
    $ 5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-02-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

The broader impact/commercial potential of this I-Corps project is the development of smart cameras with on-board processing. The proposed technology will be used as a part of building and smart city management systems. Building heating, ventilation and air conditioning (HVAC) accounts for 13% of all energy usage in the United States and nearly 40% of buildings' energy. Accurate occupancy detection may reduce energy use in HVAC systems by as much as 30%. However, there are concerns regarding occupancy detection when assessing accurate detection and privacy. The proposed technology may solve these concerns by relying on the camera's vision to provide precise information and on-device analysis to ensure no image privacy data is transmitted. The proposed technology also may be used to improve traffic light planning. Pedestrians congregating at an intersection may cause safety issues for vehicles and people. The proposed technology allows for the counting of people, cars, and bikes and the integration of this information. Additional analysis may be performed by providing count data and if pedestrian counts are not changing, there may be a need to modify traffic patterns or alert first responders.This I-Corps project is based on the development of embedded devices to run object-detection algorithms. Object detection using deep neural networks (DNNs) involves a large amount of computation, which impedes its implementation on resource/energy-limited, user-end devices. The reason for the success of DNNs is due to having knowledge over different domains of observed environments. However, only a limited knowledge of the observed environment at inference time is required, which may be learned using a shallow neural network (SHNN). The TKD (Temporal Knowledge Distillation) is a system-level design that is proposed to improve the energy consumption of object detection on the user-end device. An SHNN is deployed on the user-end device to detect objects in the observing environment. Also, a knowledge transfer mechanism is implemented to update the SHNN model using the DNN knowledge when there is a change in the object domain. Experiments demonstrate that the user-end device's energy consumption and the inference time can be improved by 78% and 71% compared with running the deep model on the user-end device.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The broader impact/commercial potential of this I-Corps project is the development of smart cameras with on-board processing. The proposed technology will be used as a part of building and smart city management systems.建筑物的供暖,通风和空调(HVAC)占美国所有能源使用量的13%,占建筑物能源的近40%。 Accurate occupancy detection may reduce energy use in HVAC systems by as much as 30%. However, there are concerns regarding occupancy detection when assessing accurate detection and privacy.提出的技术可以通过依靠相机的愿景来提供精确的信息和设备分析来解决这些问题,以确保没有传输图像隐私数据。 The proposed technology also may be used to improve traffic light planning. Pedestrians congregating at an intersection may cause safety issues for vehicles and people. The proposed technology allows for the counting of people, cars, and bikes and the integration of this information.可以通过提供计数数据来执行其他分析,如果行人计数不变,则可能需要修改流量模式或警报第一响应者。此I-Corps项目基于开发嵌入式设备以运行对象检测算法。 使用深神经网络(DNN)的对象检测涉及大量计算,这阻碍了其对资源/能量限制的用户端设备的实现。 The reason for the success of DNNs is due to having knowledge over different domains of observed environments.但是,只需要在推理时间观察到的环境有限的知识,可以使用浅神经网络(SHNN)学习。 TKD(时间知识蒸馏)是一种系统级设计,旨在改善用户端设备上对象检测的能量消耗。 An SHNN is deployed on the user-end device to detect objects in the observing environment.此外,在对象域发生更改时,还可以实现知识传输机制,以使用DNN知识更新SHNN模型。实验表明,与运行用户端设备上的深层模型相比,用户端设备的能耗和推理时间可以提高78%和71%。该奖项反映了NSF的法定任务,并认为使用基金会的知识分子优点和更广泛的影响审查标准,被认为值得通过评估来获得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yezhou Yang其他文献

Directional effects of correlated wind and waves on the dynamic response of long-span sea-crossing bridges
相关风浪方向效应对大跨跨海大桥动力响应的影响
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Rugang Yang;Yongle Li;Cheng Xu;Yezhou Yang;Chen Fang
  • 通讯作者:
    Chen Fang
Integrated Sensing Systems for Monitoring Interrelated Physiological Parameters in Young and Aged Adults
用于监测年轻人和老年人相关生理参数的集成传感系统
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Mark Sprowls;Michael Serhan;En;Lancy Lin;Christopher W. Frames;I. Kucherenko;Keyvan Mollaeian;Yang Li;V. Jammula;D. Logeswaran;M. Khine;Yezhou Yang;T. Lockhart;J. Claussen;Liang Dong;Julian J‐L Chen;Juan;Carmen Gomes;Daejin Kim;Teresa Wu;J. Margrett;Balaji Narasimhan;E. Forzani
  • 通讯作者:
    E. Forzani
Evaluating Safety Metrics for Vulnerable Road Users at Urban Traffic Intersections Using High-Density Infrastructure LiDAR System
使用高密度基础设施 LiDAR 系统评估城市交通交叉口弱势道路使用者的安全指标
  • DOI:
    10.4271/2024-01-2641
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Prabin Kumar Rath;Blake Harrison;Duo Lu;Yezhou Yang;Jeffrey Wishart;Hongbin Yu
  • 通讯作者:
    Hongbin Yu
Radiant exposure level comparison between Gaussian and top hat beams in various scanning patterns.
各种扫描模式下高斯光束和高帽光束的辐射暴露水平比较。
  • DOI:
    10.1364/ao.53.008585
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    P. U.;Yezhou Yang;H. Le;Do
  • 通讯作者:
    Do
Visuo-Lingustic Question Answering (VLQA) Challenge
视觉语言问答 (VLQA) 挑战
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shailaja Keyur Sampat;Yezhou Yang;Chitta Baral
  • 通讯作者:
    Chitta Baral

Yezhou Yang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yezhou Yang', 18)}}的其他基金

PFI-TT: Broadening Real-Time Continuous Traffic Analysis on the Roadside using AI-Powered Smart Cameras
PFI-TT:使用人工智能驱动的智能摄像头扩大路边实时连续交通分析
  • 批准号:
    2329780
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
RI: Small: SM-An Active Approach for Data Engineering to Improve Vision-Language Tasks
RI:小型:SM - 一种改进视觉语言任务的数据工程主动方法
  • 批准号:
    2132724
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Collaborative Research: CPS: Medium: Spatio-Temporal Logics for Analyzing and Querying Perception Systems
合作研究:CPS:媒介:用于分析和查询感知系统的时空逻辑
  • 批准号:
    2038666
  • 财政年份:
    2021
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
CAREER: Visual Recognition with Knowledge
职业:具有知识的视觉识别
  • 批准号:
    1750082
  • 财政年份:
    2018
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant

相似国自然基金

不确定性视角下碳交易与环境税的交互效果评估及协同优化设计
  • 批准号:
    72304063
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多目标随机优化在源荷不确定新能源热电耦合微电网中的典型问题研究
  • 批准号:
    62376239
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
不确定环境下考虑燃油和LNG动力混合船队的海运服务网络设计问题研究
  • 批准号:
    72371089
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
知识与数据混合驱动的含缺陷点阵结构不确定性分析与优化方法研究
  • 批准号:
    12302149
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
不确定非线性系统凸优化模糊自适应命令滤波反步控制及应用
  • 批准号:
    62303255
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: URoL:ASC: Determining the relationship between genes and ecosystem processes to improve biogeochemical models for nutrient management
合作研究:URoL:ASC:确定基因与生态系统过程之间的关系,以改进营养管理的生物地球化学模型
  • 批准号:
    2319123
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Determining 4-Dimensional Foot Loading Profiles of Healthy Adults across Activities of Daily Living
确定健康成年人日常生活活动的 4 维足部负荷曲线
  • 批准号:
    2473795
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Studentship
BeyondSNO: Signalling beyond protein S-nitrosylation - determining the roles of nitroxyl and hydroxylamine
BeyondSNO:蛋白质 S-亚硝基化之外的信号传导 - 确定硝酰基和羟胺的作用
  • 批准号:
    EP/Y027698/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Research Grant
Determining the clinical utility of BioEP: a multisite, prospective, study
确定 BioEP 的临床效用:一项多中心前瞻性研究
  • 批准号:
    10090508
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Investment Accelerator
Determining the geomagnetic and heliophysical parameters that control increases and decreases in Earth's outer radiation belt
确定控制地球外辐射带增减的地磁和太阳物理参数
  • 批准号:
    2903408
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了